Machine learning attack detection based-on stochastic classifier methods for enhancing of routing security in wireless sensor networks

Wireless Sensor Networks (WSNs) are vulnerable to attacks during data transmission, and many techniques have been proposed to detect and secure routing data. In this paper, we introduce a novel stochastic predictive machine learning approach designed to discern untrustworthy events and unreliable ro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ad hoc networks Ročník 163; s. 103581
Hlavní autori: Affane M., Anselme R., Satori, Hassan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2024
Predmet:
ISSN:1570-8705
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Wireless Sensor Networks (WSNs) are vulnerable to attacks during data transmission, and many techniques have been proposed to detect and secure routing data. In this paper, we introduce a novel stochastic predictive machine learning approach designed to discern untrustworthy events and unreliable routing attributes, aiming to establish an artificial intelligence-based attack detection system for WSNs. Our methodology leverages real-time analysis of the features of simulated WSN routing data. By integrating Hidden Markov Models (HMM) with Gaussian Mixture Models (GMM), we develop a robust classification framework. This framework effectively identifies outliers, pinpoints malicious network behaviors from their origins, and categorizes them as either trusted or untrusted network activities. In addition, dimensionality reduction techniques are used to improve interpretability, reduce computation and processing time, extract uncorrelated features from network data, and optimize performances. The main advantage of our approach is to establish an efficient stochastic machine learning method capable of analyzing and filtering WSN traffic to prevent suspicious and unsafe data, reduce the large dissimilarity in the collected routing features, and rapidly detect attacks before they occur. In this work, we exploit a well-tuned data set that provides a lot of routing information without losing any data. The experimental results show that the proposed stochastic attack detection system can effectively identify and categorize anomalies in wireless sensor networks with high accuracy. The classification rates of the system were found to be around 83.65%, 84.94% and 94.55%, which is significantly better than the existing classification approaches. Furthermore, the proposed system showed a positive prediction value of 11.84% higher than the existing approaches.
AbstractList Wireless Sensor Networks (WSNs) are vulnerable to attacks during data transmission, and many techniques have been proposed to detect and secure routing data. In this paper, we introduce a novel stochastic predictive machine learning approach designed to discern untrustworthy events and unreliable routing attributes, aiming to establish an artificial intelligence-based attack detection system for WSNs. Our methodology leverages real-time analysis of the features of simulated WSN routing data. By integrating Hidden Markov Models (HMM) with Gaussian Mixture Models (GMM), we develop a robust classification framework. This framework effectively identifies outliers, pinpoints malicious network behaviors from their origins, and categorizes them as either trusted or untrusted network activities. In addition, dimensionality reduction techniques are used to improve interpretability, reduce computation and processing time, extract uncorrelated features from network data, and optimize performances. The main advantage of our approach is to establish an efficient stochastic machine learning method capable of analyzing and filtering WSN traffic to prevent suspicious and unsafe data, reduce the large dissimilarity in the collected routing features, and rapidly detect attacks before they occur. In this work, we exploit a well-tuned data set that provides a lot of routing information without losing any data. The experimental results show that the proposed stochastic attack detection system can effectively identify and categorize anomalies in wireless sensor networks with high accuracy. The classification rates of the system were found to be around 83.65%, 84.94% and 94.55%, which is significantly better than the existing classification approaches. Furthermore, the proposed system showed a positive prediction value of 11.84% higher than the existing approaches.
ArticleNumber 103581
Author Affane M., Anselme R.
Satori, Hassan
Author_xml – sequence: 1
  givenname: Anselme R.
  orcidid: 0000-0001-8606-0108
  surname: Affane M.
  fullname: Affane M., Anselme R.
  email: anselme.affane@outlook.com
– sequence: 2
  givenname: Hassan
  surname: Satori
  fullname: Satori, Hassan
  email: hassan.satori@usmba.ac.ma
BookMark eNqFkLFOHDEQhl2AFCB5Ahq_wB72-o71FSkQCgHpojRJbc2Ox1kfi408JogX4Lnj5VJRJM3Mr5G-kf7vVBylnEiIc61WWunLi_0K_JRx1at-3S5mY_WRONGbQXV2UJsP4pR5r1S_7ZU-Ea_fAKeYSM4EJcX0S0KtgPfSUyWsMSc5ApPvWuCacQKuESXOwBxDpCIfqE7Zswy5SEoTJFy-5CBLfqpLZMKnEuuLjEk-x0IzMbdj4gYkqs-53PNHcRxgZvr0d5-JnzdfflzfdrvvX--ur3Yd9trWjqyFHi1YOxhDVq21HtCAbXNEo73foDehDz6s_TCYdT-S0qCUHcatH8JozsT28BdLZi4UHMYKS81aIM5OK7dIdHv3JtEtEt1BYmPNO_axxAcoL_-hPh8oarV-N2GOMVJC8k0FVudz_Cf_B1o9lOg
CitedBy_id crossref_primary_10_1080_03772063_2024_2436970
crossref_primary_10_3390_s24186143
Cites_doi 10.1155/2016/4731953
10.1186/s40537-023-00692-w
10.1016/j.procs.2019.01.028
10.1016/j.comnet.2009.05.007
10.1145/2996356
10.1016/j.adhoc.2009.09.004
10.1145/3167486.3167505
10.3390/s20030745
10.1016/j.comnet.2019.06.014
10.1145/1288107.1288137
10.1016/j.comnet.2015.03.002
10.1145/1541880.1541882
10.1016/j.jnca.2011.03.004
10.1016/j.adhoc.2008.06.003
10.1016/j.asoc.2018.05.049
10.3390/s21238017
10.1007/s10922-013-9287-z
10.1016/j.procs.2013.06.155
10.1016/S1570-8705(03)00008-8
10.1016/j.adhoc.2012.11.001
10.1109/TWC.2016.2531041
10.1007/s11831-020-09418-0
10.1109/SURV.2010.021510.00088
10.1504/IJAHUC.2015.067756
10.1007/s00521-022-07970-3
10.1186/s13638-019-1374-8
10.1016/j.procs.2016.03.092
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.adhoc.2024.103581
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_adhoc_2024_103581
S1570870524001926
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
EJD
HZ~
UHS
~HD
ID FETCH-LOGICAL-c218t-e88a2c8a88733e804117c3a817cbc31dd5cd3f2fdf4d77342be01a0087b9d7fb3
ISSN 1570-8705
IngestDate Sat Nov 29 02:26:17 EST 2025
Tue Nov 18 22:38:13 EST 2025
Sat Aug 24 15:40:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Secure routing algorithm
Machine learning
Hidden markov models
Gaussian mixture models
Stochastic attacks detection system
Artificial intelligence
Wireless sensor networks (WSNs)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c218t-e88a2c8a88733e804117c3a817cbc31dd5cd3f2fdf4d77342be01a0087b9d7fb3
ORCID 0000-0001-8606-0108
ParticipantIDs crossref_citationtrail_10_1016_j_adhoc_2024_103581
crossref_primary_10_1016_j_adhoc_2024_103581
elsevier_sciencedirect_doi_10_1016_j_adhoc_2024_103581
PublicationCentury 2000
PublicationDate 2024-10-01
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Ad hoc networks
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bettencourt, Hagberg, Larkey (b28) 2007
Kalkha, Satori, Satori (b39) 2019; 148
Affane, Satori, Sanhaji, Boutazart, Satori (b8) 2023; 35
Titouna, Naït-Abdesselam, Khokhar (b23) 2019; 161
Amish, Vaghela (b41) 2016; 79
Dargie, Poellabauer (b1) 2010
Tripathi, Gaur, Laxmi (b40) 2013; 19
Rassam, Zainal, Maarof (b14) 2015; 18
Emperuman, Chandrasekaran (b37) 2020; 20
Calafate, Manzoni, Cano, Malumbres (b44) 2009; 53
Ghadban, Honeine, Francis, Mourad-Chehade, Farah (b13) 2014
Dias, Bellalta, Oechsner (b17) 2016; 49
Chen, Tan, Gong, Zhang (b36) 2012; 2012
Zhang, Meratnia, Havinga (b25) 2010; 12
Zamry, Zainal, Rassam, Alkhammash, Ghaleb, Saeed (b18) 2021; 21
Bo Sheng, Qun Li, Weizhen Mao, Wen Jin, Outlier detection in sensor networks, in: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2007, pp. 219–228.
Wan, Xiong, Hu, Wang, Shang (b10) 2019; 2019
Park, Cho, Kim (b22) 2018
Zhang, Meratnia, Havinga (b30) 2013; 11
Boutazart, Satori, M., Hamidi, Satori (b33) 2023; 14
Jellali, Atallah, Cherif (b34) 2019
Sundar, Chitradevi, Geetharamani (b20) 2012; 47
Rathore, Park (b19) 2018; 72
Nawaz, Ali, Laghari (b5) 2021; 28
Almomani, Al-Kasasbeh, Al-Akhras (b12) 2016; 2016
Laghari, Jumani, Laghari, Nawaz (b4) 2023; 3
Xie, Han, Tian, Parvin (b15) 2011; 34
Harb, Makhoul, Laiymani, Jaber, Tawil (b9) 2014
Anastasi, Conti, Di Francesco, Passarella (b16) 2009; 7
Lung, Zhou (b7) 2010; 8
Nadeem, Hussain, Owais, Salam, Iqbal, Ahsan (b2) 2015; 83
Meesookho, Narayanan, Raghavendra (b43) 2002
Morell, Correa, Barceló, Vicario (b11) 2016; 15
Coelho, Pinho, Boaventura-Cunha (b21) 2019
Moundounga, Satori, Satori (b6) 2020
Chandola, Banerjee, Kumar (b26) 2009; 41
Farah Sanhaji, H. Satori, K. Satori, Clustering Based on Neural Networks in Wireless Sensor Networks, in: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, 2017, pp. 1–6.
Salmi, Oughdir (b42) 2023; 10
Winkler, Tuchs, Hughes, Barclay (b3) 2008
McDonald, Sanchez, Madria, Ercal (b24) 2015; 23
Zheng, Yang, Wu (b32) 2018
Sanhaji, Satori, Satori (b35) 2019
Karlof, Wagner (b38) 2003; 1
Zhang, Meratnia, Havinga (b31) 2009
10.1016/j.adhoc.2024.103581_b29
Chandola (10.1016/j.adhoc.2024.103581_b26) 2009; 41
Boutazart (10.1016/j.adhoc.2024.103581_b33) 2023; 14
Wan (10.1016/j.adhoc.2024.103581_b10) 2019; 2019
Amish (10.1016/j.adhoc.2024.103581_b41) 2016; 79
Titouna (10.1016/j.adhoc.2024.103581_b23) 2019; 161
10.1016/j.adhoc.2024.103581_b27
Meesookho (10.1016/j.adhoc.2024.103581_b43) 2002
Nadeem (10.1016/j.adhoc.2024.103581_b2) 2015; 83
Almomani (10.1016/j.adhoc.2024.103581_b12) 2016; 2016
McDonald (10.1016/j.adhoc.2024.103581_b24) 2015; 23
Karlof (10.1016/j.adhoc.2024.103581_b38) 2003; 1
Dargie (10.1016/j.adhoc.2024.103581_b1) 2010
Affane (10.1016/j.adhoc.2024.103581_b8) 2023; 35
Sanhaji (10.1016/j.adhoc.2024.103581_b35) 2019
Rassam (10.1016/j.adhoc.2024.103581_b14) 2015; 18
Jellali (10.1016/j.adhoc.2024.103581_b34) 2019
Sundar (10.1016/j.adhoc.2024.103581_b20) 2012; 47
Coelho (10.1016/j.adhoc.2024.103581_b21) 2019
Zhang (10.1016/j.adhoc.2024.103581_b31) 2009
Xie (10.1016/j.adhoc.2024.103581_b15) 2011; 34
Dias (10.1016/j.adhoc.2024.103581_b17) 2016; 49
Lung (10.1016/j.adhoc.2024.103581_b7) 2010; 8
Bettencourt (10.1016/j.adhoc.2024.103581_b28) 2007
Anastasi (10.1016/j.adhoc.2024.103581_b16) 2009; 7
Laghari (10.1016/j.adhoc.2024.103581_b4) 2023; 3
Tripathi (10.1016/j.adhoc.2024.103581_b40) 2013; 19
Chen (10.1016/j.adhoc.2024.103581_b36) 2012; 2012
Park (10.1016/j.adhoc.2024.103581_b22) 2018
Calafate (10.1016/j.adhoc.2024.103581_b44) 2009; 53
Salmi (10.1016/j.adhoc.2024.103581_b42) 2023; 10
Zhang (10.1016/j.adhoc.2024.103581_b25) 2010; 12
Zhang (10.1016/j.adhoc.2024.103581_b30) 2013; 11
Ghadban (10.1016/j.adhoc.2024.103581_b13) 2014
Emperuman (10.1016/j.adhoc.2024.103581_b37) 2020; 20
Moundounga (10.1016/j.adhoc.2024.103581_b6) 2020
Harb (10.1016/j.adhoc.2024.103581_b9) 2014
Rathore (10.1016/j.adhoc.2024.103581_b19) 2018; 72
Nawaz (10.1016/j.adhoc.2024.103581_b5) 2021; 28
Zamry (10.1016/j.adhoc.2024.103581_b18) 2021; 21
Morell (10.1016/j.adhoc.2024.103581_b11) 2016; 15
Kalkha (10.1016/j.adhoc.2024.103581_b39) 2019; 148
Winkler (10.1016/j.adhoc.2024.103581_b3) 2008
Zheng (10.1016/j.adhoc.2024.103581_b32) 2018
References_xml – start-page: 1
  year: 2019
  end-page: 5
  ident: b35
  article-title: Cluster head selection based on neural networks in wireless sensor networks
  publication-title: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems
– volume: 7
  start-page: 537
  year: 2009
  end-page: 568
  ident: b16
  article-title: Energy conservation in wireless sensor networks: A survey
  publication-title: Ad Hoc Netw.
– volume: 83
  start-page: 363
  year: 2015
  end-page: 380
  ident: b2
  article-title: Application specific study, analysis and classification of body area wireless sensor network applications
  publication-title: Comput. Netw.
– volume: 47
  year: 2012
  ident: b20
  article-title: Classification of cardiotocogram data using neural network based machine learning technique
  publication-title: Int. J. Comput. Appl.
– volume: 10
  start-page: 1
  year: 2023
  end-page: 25
  ident: b42
  article-title: Performance evaluation of deep learning techniques for DoS attacks detection in wireless sensor network
  publication-title: J. Big Data
– volume: 28
  start-page: 1349
  year: 2021
  end-page: 1369
  ident: b5
  article-title: UAV communication networks issues: a review
  publication-title: Arch. Comput. Methods Eng.
– volume: 79
  start-page: 700
  year: 2016
  end-page: 707
  ident: b41
  article-title: Detection and prevention of wormhole attack in wireless sensor network using AOMDV protocol
  publication-title: Procedia Comput. Sci.
– volume: 2012
  year: 2012
  ident: b36
  article-title: PCA-guided routing algorithm for wireless sensor networks
  publication-title: J. Comput. Netw. Commun.
– start-page: 689
  year: 2018
  end-page: 692
  ident: b22
  article-title: An effective classification for DoS attacks in wireless sensor networks
  publication-title: 2018 Tenth International Conference on Ubiquitous and Future Networks
– volume: 72
  start-page: 79
  year: 2018
  end-page: 89
  ident: b19
  article-title: Semi-supervised learning based distributed attack detection framework for IoT
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 1
  year: 2016
  end-page: 35
  ident: b17
  article-title: A survey about prediction-based data reduction in wireless sensor networks
  publication-title: ACM Comput. Surv.
– volume: 8
  start-page: 328
  year: 2010
  end-page: 344
  ident: b7
  article-title: Using hierarchical agglomerative clustering in wireless sensor networks: An energy-efficient and flexible approach
  publication-title: Ad Hoc Netw.
– volume: 12
  start-page: 159
  year: 2010
  end-page: 170
  ident: b25
  article-title: Outlier detection techniques for wireless sensor networks: A survey
  publication-title: IEEE Commun. Surveys Tutor.
– volume: 11
  start-page: 1062
  year: 2013
  end-page: 1074
  ident: b30
  article-title: Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine
  publication-title: Ad Hoc Netw.
– reference: Farah Sanhaji, H. Satori, K. Satori, Clustering Based on Neural Networks in Wireless Sensor Networks, in: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, 2017, pp. 1–6.
– start-page: 233
  year: 2014
  end-page: 236
  ident: b13
  article-title: Strategies for principal component analysis in wireless sensor networks
  publication-title: 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop
– reference: Bo Sheng, Qun Li, Weizhen Mao, Wen Jin, Outlier detection in sensor networks, in: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2007, pp. 219–228.
– start-page: 37
  year: 2018
  end-page: 49
  ident: b32
  article-title: An improved distributed PCA-based outlier detection in wireless sensor network
  publication-title: International Conference on Cloud Computing and Security
– volume: 34
  start-page: 1302
  year: 2011
  end-page: 1325
  ident: b15
  article-title: Anomaly detection in wireless sensor networks: A survey
  publication-title: J. Netw. Comput. Appl.
– volume: 20
  start-page: 745
  year: 2020
  ident: b37
  article-title: Hybrid continuous density hmm-based ensemble neural networks for sensor fault detection and classification in wireless sensor network
  publication-title: Sensors
– volume: 148
  start-page: 552
  year: 2019
  end-page: 561
  ident: b39
  article-title: Preventing black hole attack in wireless sensor network using HMM
  publication-title: Proc.comput. Sci.
– volume: 3
  year: 2023
  ident: b4
  article-title: Unmanned aerial vehicles: A review.
  publication-title: Cogn. Robot.
– start-page: 370
  year: 2002
  end-page: 374
  ident: b43
  article-title: Collaborative classification applications in sensor networks
  publication-title: Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002
– year: 2010
  ident: b1
  article-title: Fundamentals of wireless sensor networks: theory and practice
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  ident: b26
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surveys (CSUR)
– start-page: 174
  year: 2019
  end-page: 179
  ident: b34
  article-title: Principal component analysis based clustering approach for WSN with locally uniformly correlated data
  publication-title: 2019 15th International Wireless Communications & Mobile Computing Conference
– volume: 2016
  year: 2016
  ident: b12
  article-title: WSN-DS: A dataset for intrusion detection systems in wireless sensor networks
  publication-title: J. Sensors
– start-page: 1
  year: 2020
  end-page: 7
  ident: b6
  article-title: An overview of routing techniques in WSNs
  publication-title: 2020 Fourth International Conference on Intelligent Computing in Data Sciences
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  ident: b10
  article-title: Similarity-aware data aggregation using fuzzy c-means approach for wireless sensor networks
  publication-title: EURASIP J. Wireless Commun. Networking
– volume: 23
  start-page: 163
  year: 2015
  end-page: 182
  ident: b24
  article-title: A survey of methods for finding outliers in wireless sensor networks
  publication-title: J. Netw. Syst. Manag.
– volume: 14
  year: 2023
  ident: b33
  article-title: COVID-19 dataset clustering based on K-means and EM algorithms
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 18
  start-page: 85
  year: 2015
  end-page: 101
  ident: b14
  article-title: Principal component analysis–based data reduction model for wireless sensor networks
  publication-title: Int. J. Ad Hoc Ubiquitous Comput.
– volume: 53
  start-page: 2586
  year: 2009
  end-page: 2600
  ident: b44
  article-title: Markovian-based traffic modeling for mobile ad hoc networks
  publication-title: Comput. Netw.
– year: 2019
  ident: b21
  article-title: Hidden Markov Models: Theory and Implementation using MATLAB®
– start-page: 990
  year: 2009
  end-page: 995
  ident: b31
  article-title: Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks
  publication-title: 2009 International Conference on Advanced Information Networking and Applications Workshops
– start-page: 223
  year: 2007
  end-page: 239
  ident: b28
  article-title: Separating the wheat from the chaff: Practical anomaly detection schemes in ecological applications of distributed sensor networks
  publication-title: International Conference on Distributed Computing in Sensor Systems
– volume: 161
  start-page: 93
  year: 2019
  end-page: 101
  ident: b23
  article-title: DODS: A distributed outlier detection scheme for wireless sensor networks
  publication-title: Comput. Netw.
– start-page: 434
  year: 2014
  end-page: 441
  ident: b9
  article-title: K-means based clustering approach for data aggregation in periodic sensor networks
  publication-title: 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications
– volume: 15
  start-page: 3908
  year: 2016
  end-page: 3919
  ident: b11
  article-title: Data aggregation and principal component analysis in WSNs
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 37
  year: 2008
  end-page: 45
  ident: b3
  article-title: Theoretical and practical aspects of military wireless sensor networks
  publication-title: J. Telecommun. Inf. Technol.
– volume: 21
  start-page: 8017
  year: 2021
  ident: b18
  article-title: Lightweight anomaly detection scheme using incremental principal component analysis and support vector machine
  publication-title: Sensors
– volume: 19
  start-page: 1101
  year: 2013
  end-page: 1107
  ident: b40
  article-title: Comparing the impact of black hole and gray hole attack on LEACH in WSN
  publication-title: Procedia Comput. Sci.
– volume: 1
  start-page: 293
  year: 2003
  end-page: 315
  ident: b38
  article-title: Secure routing in wireless sensor networks: Attacks and countermeasures
  publication-title: Ad Hoc Netw.
– volume: 35
  start-page: 5381
  year: 2023
  end-page: 5393
  ident: b8
  article-title: Energy enhancement of routing protocol with hidden Markov model in wireless sensor networks
  publication-title: Neural Comput. Appl.
– volume: 2016
  year: 2016
  ident: 10.1016/j.adhoc.2024.103581_b12
  article-title: WSN-DS: A dataset for intrusion detection systems in wireless sensor networks
  publication-title: J. Sensors
  doi: 10.1155/2016/4731953
– volume: 14
  issue: 3
  year: 2023
  ident: 10.1016/j.adhoc.2024.103581_b33
  article-title: COVID-19 dataset clustering based on K-means and EM algorithms
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.adhoc.2024.103581_b42
  article-title: Performance evaluation of deep learning techniques for DoS attacks detection in wireless sensor network
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00692-w
– volume: 148
  start-page: 552
  year: 2019
  ident: 10.1016/j.adhoc.2024.103581_b39
  article-title: Preventing black hole attack in wireless sensor network using HMM
  publication-title: Proc.comput. Sci.
  doi: 10.1016/j.procs.2019.01.028
– volume: 53
  start-page: 2586
  issue: 14
  year: 2009
  ident: 10.1016/j.adhoc.2024.103581_b44
  article-title: Markovian-based traffic modeling for mobile ad hoc networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2009.05.007
– volume: 49
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.adhoc.2024.103581_b17
  article-title: A survey about prediction-based data reduction in wireless sensor networks
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2996356
– start-page: 233
  year: 2014
  ident: 10.1016/j.adhoc.2024.103581_b13
  article-title: Strategies for principal component analysis in wireless sensor networks
– start-page: 990
  year: 2009
  ident: 10.1016/j.adhoc.2024.103581_b31
  article-title: Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks
– volume: 8
  start-page: 328
  issue: 3
  year: 2010
  ident: 10.1016/j.adhoc.2024.103581_b7
  article-title: Using hierarchical agglomerative clustering in wireless sensor networks: An energy-efficient and flexible approach
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2009.09.004
– ident: 10.1016/j.adhoc.2024.103581_b27
  doi: 10.1145/3167486.3167505
– volume: 20
  start-page: 745
  issue: 3
  year: 2020
  ident: 10.1016/j.adhoc.2024.103581_b37
  article-title: Hybrid continuous density hmm-based ensemble neural networks for sensor fault detection and classification in wireless sensor network
  publication-title: Sensors
  doi: 10.3390/s20030745
– start-page: 1
  year: 2020
  ident: 10.1016/j.adhoc.2024.103581_b6
  article-title: An overview of routing techniques in WSNs
– volume: 161
  start-page: 93
  year: 2019
  ident: 10.1016/j.adhoc.2024.103581_b23
  article-title: DODS: A distributed outlier detection scheme for wireless sensor networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.06.014
– ident: 10.1016/j.adhoc.2024.103581_b29
  doi: 10.1145/1288107.1288137
– volume: 2012
  year: 2012
  ident: 10.1016/j.adhoc.2024.103581_b36
  article-title: PCA-guided routing algorithm for wireless sensor networks
  publication-title: J. Comput. Netw. Commun.
– start-page: 1
  year: 2019
  ident: 10.1016/j.adhoc.2024.103581_b35
  article-title: Cluster head selection based on neural networks in wireless sensor networks
– volume: 83
  start-page: 363
  year: 2015
  ident: 10.1016/j.adhoc.2024.103581_b2
  article-title: Application specific study, analysis and classification of body area wireless sensor network applications
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2015.03.002
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.adhoc.2024.103581_b26
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surveys (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 3
  year: 2023
  ident: 10.1016/j.adhoc.2024.103581_b4
  article-title: Unmanned aerial vehicles: A review.
  publication-title: Cogn. Robot.
– volume: 47
  issue: 14
  year: 2012
  ident: 10.1016/j.adhoc.2024.103581_b20
  article-title: Classification of cardiotocogram data using neural network based machine learning technique
  publication-title: Int. J. Comput. Appl.
– start-page: 174
  year: 2019
  ident: 10.1016/j.adhoc.2024.103581_b34
  article-title: Principal component analysis based clustering approach for WSN with locally uniformly correlated data
– volume: 34
  start-page: 1302
  issue: 4
  year: 2011
  ident: 10.1016/j.adhoc.2024.103581_b15
  article-title: Anomaly detection in wireless sensor networks: A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.03.004
– volume: 7
  start-page: 537
  issue: 3
  year: 2009
  ident: 10.1016/j.adhoc.2024.103581_b16
  article-title: Energy conservation in wireless sensor networks: A survey
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2008.06.003
– volume: 72
  start-page: 79
  year: 2018
  ident: 10.1016/j.adhoc.2024.103581_b19
  article-title: Semi-supervised learning based distributed attack detection framework for IoT
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.049
– start-page: 37
  year: 2008
  ident: 10.1016/j.adhoc.2024.103581_b3
  article-title: Theoretical and practical aspects of military wireless sensor networks
  publication-title: J. Telecommun. Inf. Technol.
– volume: 21
  start-page: 8017
  issue: 23
  year: 2021
  ident: 10.1016/j.adhoc.2024.103581_b18
  article-title: Lightweight anomaly detection scheme using incremental principal component analysis and support vector machine
  publication-title: Sensors
  doi: 10.3390/s21238017
– volume: 23
  start-page: 163
  issue: 1
  year: 2015
  ident: 10.1016/j.adhoc.2024.103581_b24
  article-title: A survey of methods for finding outliers in wireless sensor networks
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-013-9287-z
– volume: 19
  start-page: 1101
  year: 2013
  ident: 10.1016/j.adhoc.2024.103581_b40
  article-title: Comparing the impact of black hole and gray hole attack on LEACH in WSN
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.06.155
– volume: 1
  start-page: 293
  issue: 2–3
  year: 2003
  ident: 10.1016/j.adhoc.2024.103581_b38
  article-title: Secure routing in wireless sensor networks: Attacks and countermeasures
  publication-title: Ad Hoc Netw.
  doi: 10.1016/S1570-8705(03)00008-8
– volume: 11
  start-page: 1062
  issue: 3
  year: 2013
  ident: 10.1016/j.adhoc.2024.103581_b30
  article-title: Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2012.11.001
– volume: 15
  start-page: 3908
  issue: 6
  year: 2016
  ident: 10.1016/j.adhoc.2024.103581_b11
  article-title: Data aggregation and principal component analysis in WSNs
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2016.2531041
– start-page: 689
  year: 2018
  ident: 10.1016/j.adhoc.2024.103581_b22
  article-title: An effective classification for DoS attacks in wireless sensor networks
– volume: 28
  start-page: 1349
  year: 2021
  ident: 10.1016/j.adhoc.2024.103581_b5
  article-title: UAV communication networks issues: a review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09418-0
– year: 2019
  ident: 10.1016/j.adhoc.2024.103581_b21
– volume: 12
  start-page: 159
  issue: 2
  year: 2010
  ident: 10.1016/j.adhoc.2024.103581_b25
  article-title: Outlier detection techniques for wireless sensor networks: A survey
  publication-title: IEEE Commun. Surveys Tutor.
  doi: 10.1109/SURV.2010.021510.00088
– year: 2010
  ident: 10.1016/j.adhoc.2024.103581_b1
– volume: 18
  start-page: 85
  issue: 1–2
  year: 2015
  ident: 10.1016/j.adhoc.2024.103581_b14
  article-title: Principal component analysis–based data reduction model for wireless sensor networks
  publication-title: Int. J. Ad Hoc Ubiquitous Comput.
  doi: 10.1504/IJAHUC.2015.067756
– start-page: 223
  year: 2007
  ident: 10.1016/j.adhoc.2024.103581_b28
  article-title: Separating the wheat from the chaff: Practical anomaly detection schemes in ecological applications of distributed sensor networks
– volume: 35
  start-page: 5381
  issue: 7
  year: 2023
  ident: 10.1016/j.adhoc.2024.103581_b8
  article-title: Energy enhancement of routing protocol with hidden Markov model in wireless sensor networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07970-3
– start-page: 434
  year: 2014
  ident: 10.1016/j.adhoc.2024.103581_b9
  article-title: K-means based clustering approach for data aggregation in periodic sensor networks
– volume: 2019
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.adhoc.2024.103581_b10
  article-title: Similarity-aware data aggregation using fuzzy c-means approach for wireless sensor networks
  publication-title: EURASIP J. Wireless Commun. Networking
  doi: 10.1186/s13638-019-1374-8
– start-page: 37
  year: 2018
  ident: 10.1016/j.adhoc.2024.103581_b32
  article-title: An improved distributed PCA-based outlier detection in wireless sensor network
– volume: 79
  start-page: 700
  year: 2016
  ident: 10.1016/j.adhoc.2024.103581_b41
  article-title: Detection and prevention of wormhole attack in wireless sensor network using AOMDV protocol
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.03.092
– start-page: 370
  year: 2002
  ident: 10.1016/j.adhoc.2024.103581_b43
  article-title: Collaborative classification applications in sensor networks
SSID ssj0029201
Score 2.3965023
Snippet Wireless Sensor Networks (WSNs) are vulnerable to attacks during data transmission, and many techniques have been proposed to detect and secure routing data....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103581
SubjectTerms Artificial intelligence
Dimensionality reduction
Gaussian mixture models
Hidden markov models
Machine learning
Secure routing algorithm
Stochastic attacks detection system
Wireless sensor networks (WSNs)
Title Machine learning attack detection based-on stochastic classifier methods for enhancing of routing security in wireless sensor networks
URI https://dx.doi.org/10.1016/j.adhoc.2024.103581
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1570-8705
  databaseCode: AIEXJ
  dateStart: 20030701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0029201
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFP0AfKBW8gqD2ftHFeoFSC1QlCkvUWOH-y2JVttUtRf0N_dmdjObllUARIXK3LWjrXfl8l4NP6GkLcsF9wUWRkzrWTMikTHYlwXsZB2bBiHd7BWfbEJfnwsptPys09ib_tyArxpxNVVefFfoYY-ABuPzv4F3MOk0AHXADq0ADu0fwT8UZ8eaUI9iO-R7DqpziJtOuPqguOXS8dwAY6fmklUao4UetFzi2dPXFHp1omBNzMU5HCZ0cvFZZ8k3fqadxgrQanjc7SWLeyHYUDj0srbdad3oqPZQt2-hRyzVsI6j5x9wpPxP0z0ZTTEfDAc4Gpqw9I8iX18ImNDppsPmm0cnHF2lidgiJPiliF2pm7DqLv4wulIaljsCJ-BUgGFK_Xyi1r2V5wZJ8bcWPBex_fJdsaLEmz29uTjwfTTsBsvs8SJ6fqVBEmqPvlv41G_d1vWXJGTJ-Sx30PQicP-Kblnmmfk0Zqy5HNy7VlAAwuoYwEdWEADC-iKBXTFAupZQIEFdGABXVjqWUADC-i8oYEF1LGABqhfkG-HByfvP8S-5EaswNfrYiOEzJSQ8OnJc4PaVClXuRTQ1ipPtS6Uzm1mtWWa85xltUlSibqGdam5rfOXZKtZNOYVoSV0wuaVAxI1K-qsLlPBLWO5VtDJ0x2ShX-0Ul6PHsuinFch8fC06mGoEIbKwbBD3g2DLpwcy90_HweoKu9ROk-xAm7dNXD3XwfukYerl2CfbHXLS_OaPFA_u3m7fOM5eANgVqC4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+attack+detection+based-on+stochastic+classifier+methods+for+enhancing+of+routing+security+in+wireless+sensor+networks&rft.jtitle=Ad+hoc+networks&rft.au=Affane+M.%2C+Anselme+R.&rft.au=Satori%2C+Hassan&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=1570-8705&rft.volume=163&rft_id=info:doi/10.1016%2Fj.adhoc.2024.103581&rft.externalDocID=S1570870524001926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon