Extremum problems for Golubev sums
Suppose thatG is a finitely connected domain with rectifiable boundary γ, ∞εG, the domainsD1,...,Ds are the complements ofG, the subsetsFj⊂Dj are infinite and compact,nj≥1,j=1,...,s, are integers, λ0 is a complex-valued measure on γ, andWe consider the extremum problem where μj,j=1,...,s, are comple...
Uloženo v:
| Vydáno v: | Mathematical Notes Ročník 65; číslo 5; s. 620 - 626 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer Nature B.V
01.05.1999
|
| Témata: | |
| ISSN: | 0001-4346, 1067-9073, 1573-8876 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Suppose thatG is a finitely connected domain with rectifiable boundary γ, ∞εG, the domainsD1,...,Ds are the complements ofG, the subsetsFj⊂Dj are infinite and compact,nj≥1,j=1,...,s, are integers, λ0 is a complex-valued measure on γ, andWe consider the extremum problem where μj,j=1,...,s, are complex-valued measures onFj and are Golubev sums. We prove that β=Δ, whereWe also establish several other relations between these and other extremal variables. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0001-4346 1067-9073 1573-8876 |
| DOI: | 10.1007/BF02743172 |