Prediction of municipal waste generation using multi-expression programming for circular economy: a data-driven approach
The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framew...
Uložené v:
| Vydané v: | Environmental science and pollution research international |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
26.10.2024
|
| Predmet: | |
| ISSN: | 1614-7499, 1614-7499 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R
) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies. |
|---|---|
| AbstractList | The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R
) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies. The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R2) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies.The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R2) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies. |
| Author | Oladosu, Kamoru Olufemi Wong, Kuan Yew Olawore, Ayodeji Sulaiman |
| Author_xml | – sequence: 1 givenname: Ayodeji Sulaiman surname: Olawore fullname: Olawore, Ayodeji Sulaiman – sequence: 2 givenname: Kuan Yew surname: Wong fullname: Wong, Kuan Yew – sequence: 3 givenname: Kamoru Olufemi surname: Oladosu fullname: Oladosu, Kamoru Olufemi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39460868$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9P5SAQx4nR-Psf8GA47oUVaEupN2N0dxMTPeiZjHT6ZNNChXb1_ffy3nON8eBlmGE-3yHM94Bs--CRkBPBfwrO67MkRFEpxmXJiqrQmi23yL5QomR12TTbn_I9cpDSX84lb2S9S_aKplRcK71PXu8its5OLngaOjrM3lk3Qk9fIE1IF-gxwro7J-cXGegnx_B1jJjS6nqMYRFhGFbNLkRqXbRzD5GiDT4My3MKtIUJWBvdP_QUxqwA-3REdjroEx6_n4fk4frq_vI3u7n99efy4oZZKfTEQBVKc1tWsuRSastlncumreq2EHUO-SO8EZ0Q9aOtOi1VhwAtAKoGhYLikPzYzM3PPs-YJjO4ZLHvwWOYkymEFFxVsuEZPX1H58cBWzNGN0Bcmv_byoDcADaGlCJ2H4jgZmWJ2VhisiVmbYlZZpH-IrJuWq90iuD676Rv22WSrA |
| CitedBy_id | crossref_primary_10_1016_j_rcradv_2025_200264 crossref_primary_10_1108_JM2_12_2024_0410 |
| Cites_doi | 10.1016/j.jclepro.2022.134501 10.1007/s10163-016-0531-y 10.1787/89d5679a-en 10.1002/er.4632 10.1007/s00521-015-2078-6 10.3390/su141610133 10.1016/j.scitotenv.2021.146524 10.1109/ITNEC.2019.8729395 10.1016/j.jclepro.2020.125287 10.3390/su14095324 10.1080/19942060.2021.1945496 10.1016/j.jclepro.2018.11.063 10.1016/j.rser.2018.03.096 10.1007/s10040-013-1029-5 10.2478/rtuect-2019-0059 10.1016/j.compchemeng.2022.107946 10.1016/j.wasman.2021.08.007 10.1016/j.jenvman.2021.112584 10.1016/j.measurement.2019.06.007 10.1007/s11625-012-0161-9 10.3390/su122310088 10.1016/j.enggeo.2020.105758 10.1016/j.jmrt.2023.03.036 10.1016/j.etran.2022.100195 10.1016/j.wasman.2016.05.018 10.1007/978-3-319-30634-6_4 10.1016/j.wasman.2022.01.004 10.1016/j.oceaneng.2021.110209 10.1016/j.wasman.2011.10.017 10.1007/s00521-018-3717-5 10.1002/jbm4.10757 10.1016/j.asej.2021.03.018 10.1787/data-00601-en 10.1007/s10163-018-0743-4 10.1016/j.rser.2018.02.002 10.1007/s41062-022-00761-8 10.1016/j.engappai.2023.107834 10.1016/j.scp.2022.100740 10.1016/j.wasman.2022.01.012 10.1016/j.heliyon.2024.e25997 10.1007/978-981-10-2410-8_3 10.1016/j.undsp.2023.01.006 10.1016/j.rhisph.2021.100418 |
| ContentType | Journal Article |
| Copyright | 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1007/s11356-024-35388-y |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| ExternalDocumentID | 39460868 10_1007_s11356_024_35388_y |
| Genre | Journal Article |
| GroupedDBID | --- .VR 06D 0R~ 0VY 199 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSTC ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BANNL BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CCPQU CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRNLG FRRFC FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N9A NB0 NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNS ROL RSV S16 S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~02 ~KM -5A -5G -5~ -BR -EM -~C AAAVM AAYZH ADINQ AESKC GQ6 GROUPED_ABI_INFORM_COMPLETE NPM Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S 7X8 |
| ID | FETCH-LOGICAL-c218t-a63680c45240228c02780c9d57d3177d3460091f117bc5f826feaadaae69e16a3 |
| IEDL.DBID | RSV |
| ISSN | 1614-7499 |
| IngestDate | Sun Nov 09 12:22:54 EST 2025 Wed Feb 19 02:05:10 EST 2025 Tue Nov 18 19:39:52 EST 2025 Sat Nov 29 05:39:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Circular economy Municipal waste Japan Prediction Socioeconomic MEP Sustainable |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c218t-a63680c45240228c02780c9d57d3177d3460091f117bc5f826feaadaae69e16a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39460868 |
| PQID | 3121065290 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3121065290 pubmed_primary_39460868 crossref_primary_10_1007_s11356_024_35388_y crossref_citationtrail_10_1007_s11356_024_35388_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct-26 |
| PublicationDateYYYYMMDD | 2024-10-26 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAlternate | Environ Sci Pollut Res Int |
| PublicationYear | 2024 |
| References | J Yano (35388_CR48) 2016; 18 L Chhay (35388_CR8) 2018; 20 M Abbasi (35388_CR1) 2016; 56 H Nguyen (35388_CR32) 2020; 32 DC Montgomery (35388_CR31) 2018 A Paulauskaite-Taraseviciene (35388_CR38) 2022; 140 M Caudill (35388_CR7) 1988; 3 S Goel (35388_CR15) 2017 IDK Jaf (35388_CR21) 2024; 10 35388_CR26 35388_CR25 35388_CR47 35388_CR34 E Puntarić (35388_CR40) 2022; 14 R Asghar (35388_CR5) 2024; 131 35388_CR33 35388_CR30 B Petković (35388_CR39) 2021; 19 ZX Hoy (35388_CR17) 2022; 166 MF Iqbal (35388_CR19) 2021; 780 A Kubule (35388_CR23) 2019; 23 HL Wang (35388_CR46) 2020; 276 KB Debnath (35388_CR10) 2018; 88 B Liu (35388_CR27) 2021; 134 S Sahoo (35388_CR44) 2013; 21 V Oliveira (35388_CR35) 2019; 210 B Ribic (35388_CR42) 2019; 43 Z Shao (35388_CR45) 2019; 145 X Ma (35388_CR29) 2023; 11 R He (35388_CR16) 2022; 377 35388_CR18 KDVSK Rao (35388_CR41) 2018; 91 M Kulisz (35388_CR24) 2020; 12 A Fallahpour (35388_CR12) 2017; 28 35388_CR36 JCBF Bijos (35388_CR6) 2022; 28 A Abdalla (35388_CR2) 2022; 7 L Fan (35388_CR14) 2021; 15 S Keser (35388_CR22) 2012; 32 F Althoey (35388_CR3) 2023; 24 H-H Chu (35388_CR9) 2021; 12 M Rosecký (35388_CR43) 2021; 291 O Dobre-Baron (35388_CR11) 2022; 14 W Liu (35388_CR28) 2022; 14 OB Öztürk (35388_CR37) 2022; 243 A Fallahpour (35388_CR13) 2021; 283 D Antanasijević (35388_CR4) 2013; 8 L Jäämaa (35388_CR20) 2022; 141 |
| References_xml | – volume: 377 start-page: 134501 year: 2022 ident: 35388_CR16 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.134501 – ident: 35388_CR47 – volume: 18 start-page: 631 issue: 4 year: 2016 ident: 35388_CR48 publication-title: J Mater Cycles Waste Manag doi: 10.1007/s10163-016-0531-y – ident: 35388_CR34 doi: 10.1787/89d5679a-en – volume: 43 start-page: 5701 issue: 11 year: 2019 ident: 35388_CR42 publication-title: Croatia Int J Energy Res doi: 10.1002/er.4632 – volume: 28 start-page: 499 issue: 3 year: 2017 ident: 35388_CR12 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2078-6 – volume: 14 start-page: 10133 issue: 16 year: 2022 ident: 35388_CR40 publication-title: Sustainability doi: 10.3390/su141610133 – ident: 35388_CR18 – volume: 780 start-page: 146524 year: 2021 ident: 35388_CR19 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.146524 – ident: 35388_CR26 doi: 10.1109/ITNEC.2019.8729395 – volume: 283 start-page: 125287 year: 2021 ident: 35388_CR13 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125287 – volume: 14 start-page: 5324 issue: 9 year: 2022 ident: 35388_CR11 publication-title: Sustainability doi: 10.3390/su14095324 – volume: 15 start-page: 1159 issue: 1 year: 2021 ident: 35388_CR14 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2021.1945496 – volume: 210 start-page: 401 year: 2019 ident: 35388_CR35 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.11.063 – volume: 91 start-page: 248 year: 2018 ident: 35388_CR41 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.096 – volume: 21 start-page: 1865 issue: 8 year: 2013 ident: 35388_CR44 publication-title: Hydrogeol J doi: 10.1007/s10040-013-1029-5 – ident: 35388_CR36 – volume: 23 start-page: 114 issue: 2 year: 2019 ident: 35388_CR23 publication-title: Environ Clim Technol doi: 10.2478/rtuect-2019-0059 – volume: 166 start-page: 107946 year: 2022 ident: 35388_CR17 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2022.107946 – volume: 134 start-page: 42 year: 2021 ident: 35388_CR27 publication-title: Waste Manag doi: 10.1016/j.wasman.2021.08.007 – volume: 291 start-page: 112584 year: 2021 ident: 35388_CR43 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2021.112584 – volume: 145 start-page: 744 year: 2019 ident: 35388_CR45 publication-title: Measurement doi: 10.1016/j.measurement.2019.06.007 – volume: 3 start-page: 53 year: 1988 ident: 35388_CR7 publication-title: AI Expert – volume: 8 start-page: 37 issue: 1 year: 2013 ident: 35388_CR4 publication-title: Sustain Sci doi: 10.1007/s11625-012-0161-9 – volume: 12 start-page: 10088 issue: 23 year: 2020 ident: 35388_CR24 publication-title: Sustainability doi: 10.3390/su122310088 – volume: 276 start-page: 105758 year: 2020 ident: 35388_CR46 publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105758 – volume: 24 start-page: 918 year: 2023 ident: 35388_CR3 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.03.036 – volume: 14 start-page: 100195 year: 2022 ident: 35388_CR28 publication-title: eTransportation doi: 10.1016/j.etran.2022.100195 – volume: 56 start-page: 13 year: 2016 ident: 35388_CR1 publication-title: Waste Manag doi: 10.1016/j.wasman.2016.05.018 – ident: 35388_CR30 doi: 10.1007/978-3-319-30634-6_4 – volume: 140 start-page: 31 year: 2022 ident: 35388_CR38 publication-title: Waste Manag doi: 10.1016/j.wasman.2022.01.004 – volume-title: Applied statistics and probability for engineers year: 2018 ident: 35388_CR31 – volume: 243 start-page: 110209 year: 2022 ident: 35388_CR37 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.110209 – volume: 32 start-page: 359 issue: 3 year: 2012 ident: 35388_CR22 publication-title: Waste Manag doi: 10.1016/j.wasman.2011.10.017 – volume: 32 start-page: 3939 issue: 8 year: 2020 ident: 35388_CR32 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3717-5 – ident: 35388_CR25 doi: 10.1002/jbm4.10757 – volume: 12 start-page: 3603 issue: 4 year: 2021 ident: 35388_CR9 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.03.018 – ident: 35388_CR33 doi: 10.1787/data-00601-en – volume: 20 start-page: 1761 issue: 3 year: 2018 ident: 35388_CR8 publication-title: J Mater Cycles Waste Manag doi: 10.1007/s10163-018-0743-4 – volume: 88 start-page: 297 year: 2018 ident: 35388_CR10 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.02.002 – volume: 7 start-page: 153 issue: 2 year: 2022 ident: 35388_CR2 publication-title: Innov Infrastruct Solut doi: 10.1007/s41062-022-00761-8 – volume: 131 start-page: 107834 year: 2024 ident: 35388_CR5 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107834 – volume: 28 start-page: 100740 year: 2022 ident: 35388_CR6 publication-title: Sustain Chem Pharm doi: 10.1016/j.scp.2022.100740 – volume: 141 start-page: 173 year: 2022 ident: 35388_CR20 publication-title: Waste Manag doi: 10.1016/j.wasman.2022.01.012 – volume: 10 start-page: e25997 issue: 4 year: 2024 ident: 35388_CR21 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e25997 – start-page: 35 volume-title: Forecasting solid waste generation rates year: 2017 ident: 35388_CR15 doi: 10.1007/978-981-10-2410-8_3 – volume: 11 start-page: 232 year: 2023 ident: 35388_CR29 publication-title: Undergr Space doi: 10.1016/j.undsp.2023.01.006 – volume: 19 start-page: 100418 year: 2021 ident: 35388_CR39 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100418 |
| SSID | ssj0020927 |
| Score | 2.4008515 |
| Snippet | The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| Title | Prediction of municipal waste generation using multi-expression programming for circular economy: a data-driven approach |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39460868 https://www.proquest.com/docview/3121065290 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7WY dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1614-7499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: M0C dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 1614-7499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1614-7499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1614-7499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NwQMv43OsDCoj8QYWcez4g7dRdeIBqoqPUZ4ix3WmSiyd0m6s_z13btoJiSHt5aTIjpP4fLmz7nc_A7yWsqpwJRgetcy5CsJzZ2rHbQjOejRNn6rSTj6Z0chOJm68A29vzOC_WwghCwLKKi7ROi1f4Q9X6HWx1teT7e4qc-l8VoxgFDcYx3cVMv8e4m8vdENomVzM8YPbvdxD2OtCSXa01v0j2InNY9gfXleuYWNnuosncDVuKSdDemDzmqWqkNk5dvntUdHsNNFPp1aCwp-yhDTk8aoDyjasQ3KdUSNGuizM2oRhZTHVNq_eM88Ib8qnLf1B2Yat_Cl8Px5-G3zk3bELPKC_X3KvpbZZUAUlXnIbKDeZBTctzBSDDRQKgyQnaiFMFYoa9yd19H7qfdQuCu3lPuw28yYeACukl97LLEiVqbpWVTBKFa6KuiqI_asHYqOGMnSc5HQ0xq_ymk2ZJrjECS7TBJerHrzZ3nO-ZuT4b-9XG-2WaDiUDfFNnF8sSknUabrIXdaDZ2u1b8eTDr_Ravv8Vs86hPs5rQT0bLl-AbvL9iK-hHvhcjlbtH24Y378JDkxSVqUdiD6cPfDcDT-glefswHJfNxPK_sPnA7pxQ |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+municipal+waste+generation+using+multi-expression+programming+for+circular+economy%3A+a+data-driven+approach&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Olawore%2C+Ayodeji+Sulaiman&rft.au=Wong%2C+Kuan+Yew&rft.au=Oladosu%2C+Kamoru+Olufemi&rft.date=2024-10-26&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007%2Fs11356-024-35388-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_024_35388_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |