Prediction of municipal waste generation using multi-expression programming for circular economy: a data-driven approach

The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framew...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science and pollution research international
Hlavní autori: Olawore, Ayodeji Sulaiman, Wong, Kuan Yew, Oladosu, Kamoru Olufemi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany 26.10.2024
Predmet:
ISSN:1614-7499, 1614-7499
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R ) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies.
AbstractList The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R ) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies.
The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R2) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies.The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to sustainable development. This prompted the need for improved predictive models to guide strategic waste management within the circular economy framework. This study aims to develop a predictive model using multi-expression programming (MEP) to assess MWG. The model was developed using historical data on socioeconomic and environmental factors and validated via comparative analyses with artificial neural network (ANN), random forest (RF), and multiple linear regression (MLR) using various evaluation metrics. The parametric and sensitivity analyses of the MEP model were also conducted. The MEP, ANN, RF, and MLR models have a coefficient of determination (R2) (for testing datasets) of 0.977, 0.974, 0.957, and 0.964, respectively. The MEP model is superior in terms of accuracy and performance for the prediction of MWG when compared to the other three models. The sensitivity analysis revealed the relative importance of each input variable in the established MEP model. The novelty of this research lies in the application of MEP to predict MWG and the formulation of a new mathematical model that links socioeconomic and environmental factors with MWG. The model can be used by waste management authorities to optimize waste collection, transportation, and disposal infrastructure for an effective circular economy and sustainable development. This model also aids in the development of effective waste management policies.
Author Oladosu, Kamoru Olufemi
Wong, Kuan Yew
Olawore, Ayodeji Sulaiman
Author_xml – sequence: 1
  givenname: Ayodeji Sulaiman
  surname: Olawore
  fullname: Olawore, Ayodeji Sulaiman
– sequence: 2
  givenname: Kuan Yew
  surname: Wong
  fullname: Wong, Kuan Yew
– sequence: 3
  givenname: Kamoru Olufemi
  surname: Oladosu
  fullname: Oladosu, Kamoru Olufemi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39460868$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9P5SAQx4nR-Psf8GA47oUVaEupN2N0dxMTPeiZjHT6ZNNChXb1_ffy3nON8eBlmGE-3yHM94Bs--CRkBPBfwrO67MkRFEpxmXJiqrQmi23yL5QomR12TTbn_I9cpDSX84lb2S9S_aKplRcK71PXu8its5OLngaOjrM3lk3Qk9fIE1IF-gxwro7J-cXGegnx_B1jJjS6nqMYRFhGFbNLkRqXbRzD5GiDT4My3MKtIUJWBvdP_QUxqwA-3REdjroEx6_n4fk4frq_vI3u7n99efy4oZZKfTEQBVKc1tWsuRSastlncumreq2EHUO-SO8EZ0Q9aOtOi1VhwAtAKoGhYLikPzYzM3PPs-YJjO4ZLHvwWOYkymEFFxVsuEZPX1H58cBWzNGN0Bcmv_byoDcADaGlCJ2H4jgZmWJ2VhisiVmbYlZZpH-IrJuWq90iuD676Rv22WSrA
CitedBy_id crossref_primary_10_1016_j_rcradv_2025_200264
crossref_primary_10_1108_JM2_12_2024_0410
Cites_doi 10.1016/j.jclepro.2022.134501
10.1007/s10163-016-0531-y
10.1787/89d5679a-en
10.1002/er.4632
10.1007/s00521-015-2078-6
10.3390/su141610133
10.1016/j.scitotenv.2021.146524
10.1109/ITNEC.2019.8729395
10.1016/j.jclepro.2020.125287
10.3390/su14095324
10.1080/19942060.2021.1945496
10.1016/j.jclepro.2018.11.063
10.1016/j.rser.2018.03.096
10.1007/s10040-013-1029-5
10.2478/rtuect-2019-0059
10.1016/j.compchemeng.2022.107946
10.1016/j.wasman.2021.08.007
10.1016/j.jenvman.2021.112584
10.1016/j.measurement.2019.06.007
10.1007/s11625-012-0161-9
10.3390/su122310088
10.1016/j.enggeo.2020.105758
10.1016/j.jmrt.2023.03.036
10.1016/j.etran.2022.100195
10.1016/j.wasman.2016.05.018
10.1007/978-3-319-30634-6_4
10.1016/j.wasman.2022.01.004
10.1016/j.oceaneng.2021.110209
10.1016/j.wasman.2011.10.017
10.1007/s00521-018-3717-5
10.1002/jbm4.10757
10.1016/j.asej.2021.03.018
10.1787/data-00601-en
10.1007/s10163-018-0743-4
10.1016/j.rser.2018.02.002
10.1007/s41062-022-00761-8
10.1016/j.engappai.2023.107834
10.1016/j.scp.2022.100740
10.1016/j.wasman.2022.01.012
10.1016/j.heliyon.2024.e25997
10.1007/978-981-10-2410-8_3
10.1016/j.undsp.2023.01.006
10.1016/j.rhisph.2021.100418
ContentType Journal Article
Copyright 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s11356-024-35388-y
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
ExternalDocumentID 39460868
10_1007_s11356_024_35388_y
Genre Journal Article
GroupedDBID ---
.VR
06D
0R~
0VY
199
1N0
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BANNL
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CCPQU
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRNLG
FRRFC
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N9A
NB0
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RSV
S16
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~02
~KM
-5A
-5G
-5~
-BR
-EM
-~C
AAAVM
AAYZH
ADINQ
AESKC
GQ6
GROUPED_ABI_INFORM_COMPLETE
NPM
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
7X8
ID FETCH-LOGICAL-c218t-a63680c45240228c02780c9d57d3177d3460091f117bc5f826feaadaae69e16a3
IEDL.DBID RSV
ISSN 1614-7499
IngestDate Sun Nov 09 12:22:54 EST 2025
Wed Feb 19 02:05:10 EST 2025
Tue Nov 18 19:39:52 EST 2025
Sat Nov 29 05:39:50 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Circular economy
Municipal waste
Japan
Prediction
Socioeconomic
MEP
Sustainable
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-a63680c45240228c02780c9d57d3177d3460091f117bc5f826feaadaae69e16a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39460868
PQID 3121065290
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3121065290
pubmed_primary_39460868
crossref_primary_10_1007_s11356_024_35388_y
crossref_citationtrail_10_1007_s11356_024_35388_y
PublicationCentury 2000
PublicationDate 2024-Oct-26
PublicationDateYYYYMMDD 2024-10-26
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-26
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Environmental science and pollution research international
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2024
References J Yano (35388_CR48) 2016; 18
L Chhay (35388_CR8) 2018; 20
M Abbasi (35388_CR1) 2016; 56
H Nguyen (35388_CR32) 2020; 32
DC Montgomery (35388_CR31) 2018
A Paulauskaite-Taraseviciene (35388_CR38) 2022; 140
M Caudill (35388_CR7) 1988; 3
S Goel (35388_CR15) 2017
IDK Jaf (35388_CR21) 2024; 10
35388_CR26
35388_CR25
35388_CR47
35388_CR34
E Puntarić (35388_CR40) 2022; 14
R Asghar (35388_CR5) 2024; 131
35388_CR33
35388_CR30
B Petković (35388_CR39) 2021; 19
ZX Hoy (35388_CR17) 2022; 166
MF Iqbal (35388_CR19) 2021; 780
A Kubule (35388_CR23) 2019; 23
HL Wang (35388_CR46) 2020; 276
KB Debnath (35388_CR10) 2018; 88
B Liu (35388_CR27) 2021; 134
S Sahoo (35388_CR44) 2013; 21
V Oliveira (35388_CR35) 2019; 210
B Ribic (35388_CR42) 2019; 43
Z Shao (35388_CR45) 2019; 145
X Ma (35388_CR29) 2023; 11
R He (35388_CR16) 2022; 377
35388_CR18
KDVSK Rao (35388_CR41) 2018; 91
M Kulisz (35388_CR24) 2020; 12
A Fallahpour (35388_CR12) 2017; 28
35388_CR36
JCBF Bijos (35388_CR6) 2022; 28
A Abdalla (35388_CR2) 2022; 7
L Fan (35388_CR14) 2021; 15
S Keser (35388_CR22) 2012; 32
F Althoey (35388_CR3) 2023; 24
H-H Chu (35388_CR9) 2021; 12
M Rosecký (35388_CR43) 2021; 291
O Dobre-Baron (35388_CR11) 2022; 14
W Liu (35388_CR28) 2022; 14
OB Öztürk (35388_CR37) 2022; 243
A Fallahpour (35388_CR13) 2021; 283
D Antanasijević (35388_CR4) 2013; 8
L Jäämaa (35388_CR20) 2022; 141
References_xml – volume: 377
  start-page: 134501
  year: 2022
  ident: 35388_CR16
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.134501
– ident: 35388_CR47
– volume: 18
  start-page: 631
  issue: 4
  year: 2016
  ident: 35388_CR48
  publication-title: J Mater Cycles Waste Manag
  doi: 10.1007/s10163-016-0531-y
– ident: 35388_CR34
  doi: 10.1787/89d5679a-en
– volume: 43
  start-page: 5701
  issue: 11
  year: 2019
  ident: 35388_CR42
  publication-title: Croatia Int J Energy Res
  doi: 10.1002/er.4632
– volume: 28
  start-page: 499
  issue: 3
  year: 2017
  ident: 35388_CR12
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2078-6
– volume: 14
  start-page: 10133
  issue: 16
  year: 2022
  ident: 35388_CR40
  publication-title: Sustainability
  doi: 10.3390/su141610133
– ident: 35388_CR18
– volume: 780
  start-page: 146524
  year: 2021
  ident: 35388_CR19
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.146524
– ident: 35388_CR26
  doi: 10.1109/ITNEC.2019.8729395
– volume: 283
  start-page: 125287
  year: 2021
  ident: 35388_CR13
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125287
– volume: 14
  start-page: 5324
  issue: 9
  year: 2022
  ident: 35388_CR11
  publication-title: Sustainability
  doi: 10.3390/su14095324
– volume: 15
  start-page: 1159
  issue: 1
  year: 2021
  ident: 35388_CR14
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2021.1945496
– volume: 210
  start-page: 401
  year: 2019
  ident: 35388_CR35
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.11.063
– volume: 91
  start-page: 248
  year: 2018
  ident: 35388_CR41
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.096
– volume: 21
  start-page: 1865
  issue: 8
  year: 2013
  ident: 35388_CR44
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-013-1029-5
– ident: 35388_CR36
– volume: 23
  start-page: 114
  issue: 2
  year: 2019
  ident: 35388_CR23
  publication-title: Environ Clim Technol
  doi: 10.2478/rtuect-2019-0059
– volume: 166
  start-page: 107946
  year: 2022
  ident: 35388_CR17
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2022.107946
– volume: 134
  start-page: 42
  year: 2021
  ident: 35388_CR27
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2021.08.007
– volume: 291
  start-page: 112584
  year: 2021
  ident: 35388_CR43
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2021.112584
– volume: 145
  start-page: 744
  year: 2019
  ident: 35388_CR45
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.007
– volume: 3
  start-page: 53
  year: 1988
  ident: 35388_CR7
  publication-title: AI Expert
– volume: 8
  start-page: 37
  issue: 1
  year: 2013
  ident: 35388_CR4
  publication-title: Sustain Sci
  doi: 10.1007/s11625-012-0161-9
– volume: 12
  start-page: 10088
  issue: 23
  year: 2020
  ident: 35388_CR24
  publication-title: Sustainability
  doi: 10.3390/su122310088
– volume: 276
  start-page: 105758
  year: 2020
  ident: 35388_CR46
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105758
– volume: 24
  start-page: 918
  year: 2023
  ident: 35388_CR3
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2023.03.036
– volume: 14
  start-page: 100195
  year: 2022
  ident: 35388_CR28
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100195
– volume: 56
  start-page: 13
  year: 2016
  ident: 35388_CR1
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2016.05.018
– ident: 35388_CR30
  doi: 10.1007/978-3-319-30634-6_4
– volume: 140
  start-page: 31
  year: 2022
  ident: 35388_CR38
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2022.01.004
– volume-title: Applied statistics and probability for engineers
  year: 2018
  ident: 35388_CR31
– volume: 243
  start-page: 110209
  year: 2022
  ident: 35388_CR37
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.110209
– volume: 32
  start-page: 359
  issue: 3
  year: 2012
  ident: 35388_CR22
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2011.10.017
– volume: 32
  start-page: 3939
  issue: 8
  year: 2020
  ident: 35388_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3717-5
– ident: 35388_CR25
  doi: 10.1002/jbm4.10757
– volume: 12
  start-page: 3603
  issue: 4
  year: 2021
  ident: 35388_CR9
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.03.018
– ident: 35388_CR33
  doi: 10.1787/data-00601-en
– volume: 20
  start-page: 1761
  issue: 3
  year: 2018
  ident: 35388_CR8
  publication-title: J Mater Cycles Waste Manag
  doi: 10.1007/s10163-018-0743-4
– volume: 88
  start-page: 297
  year: 2018
  ident: 35388_CR10
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.02.002
– volume: 7
  start-page: 153
  issue: 2
  year: 2022
  ident: 35388_CR2
  publication-title: Innov Infrastruct Solut
  doi: 10.1007/s41062-022-00761-8
– volume: 131
  start-page: 107834
  year: 2024
  ident: 35388_CR5
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107834
– volume: 28
  start-page: 100740
  year: 2022
  ident: 35388_CR6
  publication-title: Sustain Chem Pharm
  doi: 10.1016/j.scp.2022.100740
– volume: 141
  start-page: 173
  year: 2022
  ident: 35388_CR20
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2022.01.012
– volume: 10
  start-page: e25997
  issue: 4
  year: 2024
  ident: 35388_CR21
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e25997
– start-page: 35
  volume-title: Forecasting solid waste generation rates
  year: 2017
  ident: 35388_CR15
  doi: 10.1007/978-981-10-2410-8_3
– volume: 11
  start-page: 232
  year: 2023
  ident: 35388_CR29
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2023.01.006
– volume: 19
  start-page: 100418
  year: 2021
  ident: 35388_CR39
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100418
SSID ssj0020927
Score 2.4008515
Snippet The existing surge in municipal waste generation (MWG), characterized by swiftly changing and uncontrollable factors, poses a significant challenge to...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
Title Prediction of municipal waste generation using multi-expression programming for circular economy: a data-driven approach
URI https://www.ncbi.nlm.nih.gov/pubmed/39460868
https://www.proquest.com/docview/3121065290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7WY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M0C
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NwQMv43OsDCoj8QYWcez4g7dRdeIBqoqPUZ4ix3WmSiyd0m6s_z13btoJiSHt5aTIjpP4fLmz7nc_A7yWsqpwJRgetcy5CsJzZ2rHbQjOejRNn6rSTj6Z0chOJm68A29vzOC_WwghCwLKKi7ROi1f4Q9X6HWx1teT7e4qc-l8VoxgFDcYx3cVMv8e4m8vdENomVzM8YPbvdxD2OtCSXa01v0j2InNY9gfXleuYWNnuosncDVuKSdDemDzmqWqkNk5dvntUdHsNNFPp1aCwp-yhDTk8aoDyjasQ3KdUSNGuizM2oRhZTHVNq_eM88Ib8qnLf1B2Yat_Cl8Px5-G3zk3bELPKC_X3KvpbZZUAUlXnIbKDeZBTctzBSDDRQKgyQnaiFMFYoa9yd19H7qfdQuCu3lPuw28yYeACukl97LLEiVqbpWVTBKFa6KuiqI_asHYqOGMnSc5HQ0xq_ymk2ZJrjECS7TBJerHrzZ3nO-ZuT4b-9XG-2WaDiUDfFNnF8sSknUabrIXdaDZ2u1b8eTDr_Ravv8Vs86hPs5rQT0bLl-AbvL9iK-hHvhcjlbtH24Y378JDkxSVqUdiD6cPfDcDT-glefswHJfNxPK_sPnA7pxQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+municipal+waste+generation+using+multi-expression+programming+for+circular+economy%3A+a+data-driven+approach&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Olawore%2C+Ayodeji+Sulaiman&rft.au=Wong%2C+Kuan+Yew&rft.au=Oladosu%2C+Kamoru+Olufemi&rft.date=2024-10-26&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007%2Fs11356-024-35388-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_024_35388_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon