High-Radix/Mixed-Radix NTT Multiplication Algorithm/Architecture Co-Design Over Fermat Modulus

Polynomial multiplication using Number Theoretic Transform (NTT) is crucial in lattice-based post-quantum cryptography (PQC) and fully homomorphic encryption (FHE), with modulus <inline-formula><tex-math notation="LaTeX">q</tex-math> <mml:math><mml:mi>q</mm...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers Vol. 74; no. 10; pp. 3519 - 3533
Main Authors: Xing, Yile, Li, Guangyan, Ye, Zewen, Luk, Ryan W. L., Chen, Donglong, Yan, Hong, Cheung, Ray C. C.
Format: Journal Article
Language:English
Published: IEEE 01.10.2025
Subjects:
ISSN:0018-9340, 1557-9956
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Polynomial multiplication using Number Theoretic Transform (NTT) is crucial in lattice-based post-quantum cryptography (PQC) and fully homomorphic encryption (FHE), with modulus <inline-formula><tex-math notation="LaTeX">q</tex-math> <mml:math><mml:mi>q</mml:mi></mml:math><inline-graphic xlink:href="chen-ieq1-3590972.gif"/> </inline-formula> significantly affecting performance. Fermat moduli of the form <inline-formula><tex-math notation="LaTeX">2^{2^{n}}+1</tex-math> <mml:math><mml:msup><mml:mn>2</mml:mn><mml:mrow><mml:msup><mml:mn>2</mml:mn><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math><inline-graphic xlink:href="chen-ieq2-3590972.gif"/> </inline-formula>, such as 65537, offer efficiency gains due to simplified modular reduction and powers-of-2 twiddle factors in NTT. While Fermat moduli have been directly applied or explored for incorporation into existing schemes, Fermat NTT-based polynomial multiplication designs remain underexplored in fully exploiting the benefits of Fermat moduli. This work presents a high-radix/mixed-radix NTT architecture tailored for Fermat moduli, which improves the utilization of the powers-of-2 twiddle factors in large transform sizes. In most cases, our design achieves a 30%-85% reduction in DSP area-time product (ATP) and a 70%-100% reduction in BRAM ATP compared to state-of-the-art designs with smaller or equivalent modulus, while maintaining competitive LUT and FF ATP, underscoring the potential of Fermat NTT-based polynomial multipliers in lattice-based cryptography.
AbstractList Polynomial multiplication using Number Theoretic Transform (NTT) is crucial in lattice-based post-quantum cryptography (PQC) and fully homomorphic encryption (FHE), with modulus <inline-formula><tex-math notation="LaTeX">q</tex-math> <mml:math><mml:mi>q</mml:mi></mml:math><inline-graphic xlink:href="chen-ieq1-3590972.gif"/> </inline-formula> significantly affecting performance. Fermat moduli of the form <inline-formula><tex-math notation="LaTeX">2^{2^{n}}+1</tex-math> <mml:math><mml:msup><mml:mn>2</mml:mn><mml:mrow><mml:msup><mml:mn>2</mml:mn><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math><inline-graphic xlink:href="chen-ieq2-3590972.gif"/> </inline-formula>, such as 65537, offer efficiency gains due to simplified modular reduction and powers-of-2 twiddle factors in NTT. While Fermat moduli have been directly applied or explored for incorporation into existing schemes, Fermat NTT-based polynomial multiplication designs remain underexplored in fully exploiting the benefits of Fermat moduli. This work presents a high-radix/mixed-radix NTT architecture tailored for Fermat moduli, which improves the utilization of the powers-of-2 twiddle factors in large transform sizes. In most cases, our design achieves a 30%-85% reduction in DSP area-time product (ATP) and a 70%-100% reduction in BRAM ATP compared to state-of-the-art designs with smaller or equivalent modulus, while maintaining competitive LUT and FF ATP, underscoring the potential of Fermat NTT-based polynomial multipliers in lattice-based cryptography.
Author Cheung, Ray C. C.
Xing, Yile
Li, Guangyan
Ye, Zewen
Chen, Donglong
Luk, Ryan W. L.
Yan, Hong
Author_xml – sequence: 1
  givenname: Yile
  orcidid: 0009-0000-4481-4020
  surname: Xing
  fullname: Xing, Yile
  email: ylxing2-c@my.cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, China
– sequence: 2
  givenname: Guangyan
  orcidid: 0000-0002-8399-9467
  surname: Li
  fullname: Li, Guangyan
  email: guangyali5-c@my.cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, China
– sequence: 3
  givenname: Zewen
  orcidid: 0000-0003-3623-3554
  surname: Ye
  fullname: Ye, Zewen
  email: lucas.zw.ye@outlook.com
  organization: College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Ryan W. L.
  orcidid: 0009-0007-2738-1180
  surname: Luk
  fullname: Luk, Ryan W. L.
  email: ryanluk5-c@my.cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, China
– sequence: 5
  givenname: Donglong
  orcidid: 0000-0001-5357-7442
  surname: Chen
  fullname: Chen, Donglong
  email: donglongchen@uic.edu.cn
  organization: Beijing Normal-Hong Kong Baptist University, Zhuhai, China
– sequence: 6
  givenname: Hong
  orcidid: 0000-0001-9661-3095
  surname: Yan
  fullname: Yan, Hong
  email: h.yan@cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, China
– sequence: 7
  givenname: Ray C. C.
  orcidid: 0000-0002-6764-0729
  surname: Cheung
  fullname: Cheung, Ray C. C.
  email: r.cheung@cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, SAR, China
BookMark eNpFkEFPwjAYhhujiYCevXjoHyj72q3deiRTxAQkMfPqUrqvUDM20m0G_70SSDy97-F93sMzJtdN2yAhDxymnIOOinwqQMhpLDXoVFyREZcyZVpLdU1GADxjOk7gloy77gsAlAA9Ip8Lv92xd1P5Y7TyR6zOnb4VBV0Nde8Ptbem921DZ_W2Db7f7aNZsDvfo-2HgDRv2RN2ftvQ9TcGOsewNz1dtdVQD90duXGm7vD-khPyMX8u8gVbrl9e89mSWcGznqU2sXwTO660zYTDCmyCRmQgTeykdipRmMlKVJpDpTA2qLjaOKXBaRDOxRMSnX9taLsuoCsPwe9N-Ck5lCc9ZZGXJz3lRc8f8XgmPCL-rzlkKuFp_Asui2OH
CODEN ITCOB4
Cites_doi 10.1145/3489517.3530656
10.1109/82.142032
10.1016/j.dsp.2021.103029
10.1109/TVLSI.2025.3552852
10.1109/ICBDA.2019.8713250
10.1109/TASSP.1976.1162834
10.1109/TETC.2023.3270971
10.1109/TC.2023.3320040
10.1007/978-3-662-44709-3_21
10.46586/tches.v2022.i1.94-126
10.1109/TCSII.2023.3296492
10.1109/TCSI.2014.2350431
10.46586/tches.v2024.i2.130-153
10.1109/ACCESS.2022.3145988
10.1007/978-3-031-22972-5_3
10.1364/OL.531418
10.1109/TC.2020.3017930
10.1109/TC.2025.3540647
10.1109/ISCAS.2001.922322
10.1109/TETC.2022.3144101
10.1109/TCSVT.2005.858612
10.1109/TCAD.2022.3205552
10.1007/978-3-319-22174-8_19
10.1109/ICET49382.2020.9119654
10.1109/TVLSI.2023.3312423
10.46586/tches.v2019.i4.17-61
10.1109/TCAD.2020.2973355
10.1109/TASSP.1974.1162555
10.1109/TCAD.2023.3316988
10.1007/978-3-031-09234-3_42
10.1007/978-3-031-68382-4_3
10.46586/tches.v2020.i2.49-72
10.1109/JLT.2024.3393009
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TC.2025.3590972
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 3533
ExternalDocumentID 10_1109_TC_2025_3590972
11086417
Genre orig-research
GrantInformation_xml – fundername: Guangdong Provincial Key Laboratory of IRADS
  grantid: 2022B1212010006
– fundername: Guangdong Province General Universities Key Field Project (New Generation Information Technology)
  grantid: 2023ZDZX1033
– fundername: Guangdong and Hong Kong Universities
– fundername: UIC Research
  grantid: UICR04202401-21
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2024A1515011274
  funderid: 10.13039/501100021171
– fundername: CityUHK Project
  grantid: 9440356
– fundername: Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA)
– fundername: ITF Project
  grantid: ITS/098/22
GroupedDBID --Z
-DZ
-~X
.55
.DC
0R~
29I
3EH
3O-
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
MVM
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
TWZ
UHB
UKR
UPT
VH1
X7M
XJT
XOL
XZL
YXB
YYQ
YZZ
ZCG
AAYXX
ABUFD
CITATION
ID FETCH-LOGICAL-c218t-7c4c1b3f169c82fed0c4ea2805a3f59f646e85d2d910d6e3ae616bf690f902ff3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574175200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sat Nov 29 07:29:32 EST 2025
Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-7c4c1b3f169c82fed0c4ea2805a3f59f646e85d2d910d6e3ae616bf690f902ff3
ORCID 0000-0002-8399-9467
0000-0003-3623-3554
0009-0000-4481-4020
0000-0001-5357-7442
0000-0002-6764-0729
0000-0001-9661-3095
0009-0007-2738-1180
PageCount 15
ParticipantIDs crossref_primary_10_1109_TC_2025_3590972
ieee_primary_11086417
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Chen (ref11) 2024
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref34
  doi: 10.1145/3489517.3530656
– ident: ref33
  doi: 10.1109/82.142032
– ident: ref12
  doi: 10.1016/j.dsp.2021.103029
– ident: ref1
  doi: 10.1109/TVLSI.2025.3552852
– ident: ref14
  doi: 10.1109/ICBDA.2019.8713250
– ident: ref7
  doi: 10.1109/TASSP.1976.1162834
– ident: ref22
  doi: 10.1109/TETC.2023.3270971
– ident: ref23
  doi: 10.1109/TC.2023.3320040
– year: 2024
  ident: ref11
  article-title: Fermat number transform based chromatic dispersion compensation and adaptive equalization algorithm
– ident: ref27
  doi: 10.1007/978-3-662-44709-3_21
– ident: ref16
  doi: 10.46586/tches.v2022.i1.94-126
– ident: ref20
  doi: 10.1109/TCSII.2023.3296492
– ident: ref31
  doi: 10.1109/TCSI.2014.2350431
– ident: ref3
  doi: 10.46586/tches.v2024.i2.130-153
– ident: ref21
  doi: 10.1109/ACCESS.2022.3145988
– ident: ref8
  doi: 10.1007/978-3-031-22972-5_3
– ident: ref10
  doi: 10.1364/OL.531418
– ident: ref26
  doi: 10.1109/TC.2020.3017930
– ident: ref2
  doi: 10.1109/TC.2025.3540647
– ident: ref30
  doi: 10.1109/ISCAS.2001.922322
– ident: ref18
  doi: 10.1109/TETC.2022.3144101
– ident: ref15
  doi: 10.1109/TCSVT.2005.858612
– ident: ref17
  doi: 10.1109/TCAD.2022.3205552
– ident: ref28
  doi: 10.1007/978-3-319-22174-8_19
– ident: ref5
  doi: 10.1109/ICET49382.2020.9119654
– ident: ref25
  doi: 10.1109/TVLSI.2023.3312423
– ident: ref32
  doi: 10.46586/tches.v2019.i4.17-61
– ident: ref13
  doi: 10.1109/TCAD.2020.2973355
– ident: ref29
  doi: 10.1109/TASSP.1974.1162555
– ident: ref19
  doi: 10.1109/TCAD.2023.3316988
– ident: ref6
  doi: 10.1007/978-3-031-09234-3_42
– ident: ref4
  doi: 10.1007/978-3-031-68382-4_3
– ident: ref24
  doi: 10.46586/tches.v2020.i2.49-72
– ident: ref9
  doi: 10.1109/JLT.2024.3393009
SSID ssj0006209
Score 2.4577332
Snippet Polynomial multiplication using Number Theoretic Transform (NTT) is crucial in lattice-based post-quantum cryptography (PQC) and fully homomorphic encryption...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 3519
SubjectTerms conflict-free memory access
Convolution
Cryptography
Discrete Fourier transforms
Fermat number transform
Hardware
high radix
mixed radix
Polynomial multiplication
Polynomials
Training
Transforms
Urban areas
Vectors
Writing
Title High-Radix/Mixed-Radix NTT Multiplication Algorithm/Architecture Co-Design Over Fermat Modulus
URI https://ieeexplore.ieee.org/document/11086417
Volume 74
WOSCitedRecordID wos001574175200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADhVJEeckDA0saO3aceqwCFQMtCAXUiSjxAyKVBrUp6s_HTlIoAwObFcVKdGf77vN9dwfApdA0lZoZpMqIdqgwOIUjmjqCeBppLCQqWyc83wXjcX8y4Q91snqZC6OUKslnqmeHZSxf5mJpr8pcS1lnFAcN0AiCoErW-j522ZrPgc3nCEV1HR-MuBuFBgh6fo_43Far-WWCNnqqlCZl2Prnz-yDvdp3hINK2QdgS83aoLXuywDrbdoGuxtFBg_Bi6VyOI-JzFbuKFspWY3hOIrgqKIT1vd2cDB9zedZ8fbuDjbiCzDMneuS6AHvzcKHQ3uYF3CUy-V0ueiAp-FNFN46dVcFRxhzXjiBoAKnRGPGRd_TSiJBVeL1kZ8Q7XPNKFN9X3rSOBKSKZIohlmqDYrWHHlakyPQnOUzdQygTBXjaeobH8qj2kAVkhh_EHOBFaFBILrgai3o-KMqnhGXoAPxOApjq5O41kkXdKyIf16rpXvyx_NTsGOnV7S6M9As5kt1DrbFZ5Et5hflyvgC29621g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xkoCBZxHl6YGBJdSOHaceq0IFoi0IBcRElPgBlaBBbYr4-dhJCmVgYLOiyInubN99vu_uAE6kYaky3CJVTo3HpMUpArPUk9Q32BCpcNE64aEb9vvNx0dxWyWrF7kwWuuCfKbP3LCI5atMTtxVWcNR1jkj4TwsBoz5pEzX-j54-ZTRQewHKcNVJR-CRSNqWyjoB2c0EK5ezS8jNNNVpTAqnfV__s4GrFXeI2qV6t6EOT3cgvVpZwZUbdQtWJ0pM7gNT47M4d0lavDZ6A0-tSrHqB9FqFcSCqubO9R6fc5Gg_zlrdGaiTCgduadF1QPdGOXPuq44zxHvUxNXifjGtx3LqL2pVf1VfCkNei5F0omSUoN4UI2faMVlkwnfhMHCTWBMJxx3QyUr6wrobimieaEp8biaCOwbwzdgYVhNtS7gFSquUjTwHpRPjMWrNDEeoRESKIpC0NZh9OpoOP3snxGXMAOLOKoHTudxJVO6lBzIv55rZLu3h_Pj2H5Mup14-5V_3ofVtxUJcnuABby0UQfwpL8yAfj0VGxSr4AjPS6HQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Radix%2FMixed-Radix+NTT+Multiplication+Algorithm%2FArchitecture+Co-Design+Over+Fermat+Modulus&rft.jtitle=IEEE+transactions+on+computers&rft.au=Xing%2C+Yile&rft.au=Li%2C+Guangyan&rft.au=Ye%2C+Zewen&rft.au=Luk%2C+Ryan+W.+L.&rft.date=2025-10-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=74&rft.issue=10&rft.spage=3519&rft.epage=3533&rft_id=info:doi/10.1109%2FTC.2025.3590972&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2025_3590972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon