A Learning-Based Assembly Sequence Planning Method Using Neural Combinatorial Optimization With Satisfactory Generalization Ability
This paper proposes a specific and effective real-time sequence planning method using robot manipulators to complete complex assembly tasks. Many previous studies developed different traversal methods to obtain the optimal assembly sequence. Besides, a number of algorithms were proposed to enhance f...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automation science and engineering Jg. 22; S. 8952 - 8964 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.01.2025
|
| Schlagworte: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes a specific and effective real-time sequence planning method using robot manipulators to complete complex assembly tasks. Many previous studies developed different traversal methods to obtain the optimal assembly sequence. Besides, a number of algorithms were proposed to enhance flexibility when the conditions or rules were changed in various sequence optimization problems. However, these state-of-the-art (STOA) methods necessarily require modifications when task details are changed. Consequently, to further improve the generalization ability and improve the performance of the sequence optimization, a neural combinatorial optimization algorithm combined with a self-learning strategy is proposed for assembly sequence planning. In addition, obstacle avoidance and the non-collision constraints between workpieces in the assembly process are considered. According to the experiment results, the new method is superior to the STOA methods in terms of optimization efficiency. More importantly, the proposed method has satisfactory generalization ability for different assembly tasks.Note to Practitioners-This paper studies assembly sequence planning problems for different real-world applications in industrial and home service fields. Many assembly sequence planning solutions have been widely utilized before. However, the generalization ability of the previous methods is not satisfactory since the re-adjust process is required when the workpiece number or collision condition changes in different tasks.Motivated by the above reasons, this paper develops a learning-based assembly sequence planning solution to resolve complex assembly problems without parameter re-adjustment processes. Users can directly apply the developed workpiece identification and localization method to obtain the sensing information. Then, the newly designed collision-free cost function should be programmed as the core of the assembly sequence optimization. Next, the proposed neural combinatorial optimization (NCO) with the sensing information and target configuration as inputs can provide the optimal assembly sequence by self-learning. The learned NCO-based method can be directly applied to diverse planning tasks, even with different workpiece numbers. Users can also refer to the experimental examples in this paper for the extension of the proposed method to their own applications. |
|---|---|
| AbstractList | This paper proposes a specific and effective real-time sequence planning method using robot manipulators to complete complex assembly tasks. Many previous studies developed different traversal methods to obtain the optimal assembly sequence. Besides, a number of algorithms were proposed to enhance flexibility when the conditions or rules were changed in various sequence optimization problems. However, these state-of-the-art (STOA) methods necessarily require modifications when task details are changed. Consequently, to further improve the generalization ability and improve the performance of the sequence optimization, a neural combinatorial optimization algorithm combined with a self-learning strategy is proposed for assembly sequence planning. In addition, obstacle avoidance and the non-collision constraints between workpieces in the assembly process are considered. According to the experiment results, the new method is superior to the STOA methods in terms of optimization efficiency. More importantly, the proposed method has satisfactory generalization ability for different assembly tasks.Note to Practitioners-This paper studies assembly sequence planning problems for different real-world applications in industrial and home service fields. Many assembly sequence planning solutions have been widely utilized before. However, the generalization ability of the previous methods is not satisfactory since the re-adjust process is required when the workpiece number or collision condition changes in different tasks.Motivated by the above reasons, this paper develops a learning-based assembly sequence planning solution to resolve complex assembly problems without parameter re-adjustment processes. Users can directly apply the developed workpiece identification and localization method to obtain the sensing information. Then, the newly designed collision-free cost function should be programmed as the core of the assembly sequence optimization. Next, the proposed neural combinatorial optimization (NCO) with the sensing information and target configuration as inputs can provide the optimal assembly sequence by self-learning. The learned NCO-based method can be directly applied to diverse planning tasks, even with different workpiece numbers. Users can also refer to the experimental examples in this paper for the extension of the proposed method to their own applications. |
| Author | Xu, Tiantian Hou, Ruiming Duan, Jianghua Yang, Chenguang Wu, Xinyu Xu, Sheng |
| Author_xml | – sequence: 1 givenname: Ruiming surname: Hou fullname: Hou, Ruiming organization: Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Sheng orcidid: 0000-0002-5086-4152 surname: Xu fullname: Xu, Sheng email: sheng.xu@siat.ac.cn organization: Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Chenguang orcidid: 0000-0001-5255-5559 surname: Yang fullname: Yang, Chenguang organization: Department of Computer Science, University of Liverpool, Liverpool, U.K – sequence: 4 givenname: Jianghua orcidid: 0009-0005-2271-8253 surname: Duan fullname: Duan, Jianghua organization: HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Futian, China – sequence: 5 givenname: Xinyu orcidid: 0000-0001-6130-7821 surname: Wu fullname: Wu, Xinyu organization: Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 6 givenname: Tiantian orcidid: 0000-0001-8974-4572 surname: Xu fullname: Xu, Tiantian organization: Engineering Research Center of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, China |
| BookMark | eNpNkEFLwzAYhoNMcJv-AMFD_kBn0jRpeqxjTmE6YRseS5p-cZE2nU13qFf_uC2b4Ol7X3je7_BM0MjVDhC6pWRGKUnut-lmMQtJGM1YlDBB4ws0ppzLgMWSjYYc8YAnnF-hifefpCdlQsboJ8UrUI2z7iN4UB4KnHoPVV52eANfR3Aa8Fup3ADgF2j3dYF3fiivcGxUied1lVun2rqxfVsfWlvZb9Xa2uF32-7xps_eKN0DHV6Cg370B6S5LW3bXaNLo0oPN-c7RbvHxXb-FKzWy-d5ugp0SGUbcB4XWkaC6sjoXBlR0FyY2GhVGMkMqFiAFKYgXFKgXDAj8jyHhCiiYyETNkX09Fc3tfcNmOzQ2Eo1XUZJNljMBovZYDE7W-w3d6eNBYB_fMxDkjD2CyvNdEs |
| CODEN | ITASC7 |
| Cites_doi | 10.1109/tase.2024.3421889 10.1214/ss/1177011077 10.1109/MCI.2023.3277768 10.1109/TASE.2023.3236805 10.1109/TASE.2022.3213730 10.1007/s00170-013-4799-y 10.1109/TSMC.2020.3013904 10.1109/LRA.2023.3330611 10.1007/bf01473902 10.1109/TRO.2022.3197013 10.1109/TASE.2014.2345569 10.23940/ijpe.21.03.p4.289298 10.3390/sym14051013 10.1109/TASE.2021.3136006 10.1109/TIE.2018.2886798 10.1109/TRO.2022.3157147 10.1016/j.jairtraman.2013.06.001 10.1016/j.cirpj.2022.11.003 10.1109/TASE.2012.2232652 10.1007/s00170-006-0438-1 10.1016/j.jmsy.2021.01.004 10.1016/j.sysconle.2004.08.007 10.1177/0954408918764459 10.1007/bf01179417 10.1109/TASE.2018.2791665 10.1007/s00170-015-7565-5 10.1109/CoASE.2015.7294142 10.1177/0954406215584633 10.1177/0954406219842908 10.1109/ICACI.2018.8377505 10.1109/TSMC.2023.3317390 10.1109/TCYB.2021.3121080 10.1109/LRA.2023.3280816 10.1007/s00170-003-1952-z 10.1016/j.advengsoft.2016.01.008 10.1080/00207543.2021.1937748 10.1109/TASE.2016.2622253 10.1016/j.birob.2021.100001 10.1109/TRO.2022.3198020 10.1007/s11465-020-0613-3 10.1016/j.advengsoft.2013.12.007 10.1109/TNNLS.2021.3105937 10.1109/21.87086 10.1109/RCAR58764.2023.10249862 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2024.3493617 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 8964 |
| ExternalDocumentID | 10_1109_TASE_2024_3493617 10752093 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2022B1515120010 funderid: 10.13039/501100021171 – fundername: Shenzhen Science and Technology Program grantid: KCXFZ20211020165003005; JCYJ20220818101611025; RCJC20231211085926038 – fundername: National Key Research and Development Project grantid: 2023YFB4705300 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62273327; U22A2064 funderid: 10.13039/501100001809 – fundername: Shenzhen Institutes of Advanced Technology and Chinese University of Hong Kong (SIAT-CUHK) Joint Laboratory of Robotics and Intelligent Systems. funderid: 10.13039/501100011443 – fundername: Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone grantid: HZQB-KCZYB-2020083 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c218t-557dc8461c4fcbaf6d1b6f7fcadf83fea76e86fd0581e1563f6bbbe90a0c76893 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001358234900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 08:05:23 EST 2025 Wed Aug 27 02:04:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c218t-557dc8461c4fcbaf6d1b6f7fcadf83fea76e86fd0581e1563f6bbbe90a0c76893 |
| ORCID | 0000-0001-5255-5559 0009-0005-2271-8253 0000-0001-8974-4572 0000-0001-6130-7821 0000-0002-5086-4152 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TASE_2024_3493617 ieee_primary_10752093 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref14 Wang (ref22) 2005; 25 ref36 ref11 ref33 ref10 ref32 Ying (ref25) 2021; 58 ref2 ref1 ref17 ref39 ref16 ref19 ref18 Bello (ref43) 2016 Wu (ref38) 2022; 60 ref24 ref46 ref23 ref26 ref20 ref42 Garmendia (ref45) 2022 ref41 ref21 Suszyǹski (ref37) 2022; 14 ref28 ref27 Mirjalili (ref30) 2016; 95 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Mirjalili (ref31) 2014; 69 ref40 Borkar (ref44) 2005; 54 |
| References_xml | – ident: ref24 doi: 10.1109/tase.2024.3421889 – ident: ref27 doi: 10.1214/ss/1177011077 – ident: ref46 doi: 10.1109/MCI.2023.3277768 – ident: ref2 doi: 10.1109/TASE.2023.3236805 – ident: ref5 doi: 10.1109/TASE.2022.3213730 – ident: ref12 doi: 10.1007/s00170-013-4799-y – ident: ref34 doi: 10.1109/TSMC.2020.3013904 – ident: ref9 doi: 10.1109/LRA.2023.3330611 – ident: ref18 doi: 10.1007/bf01473902 – ident: ref35 doi: 10.1109/TRO.2022.3197013 – ident: ref11 doi: 10.1109/TASE.2014.2345569 – ident: ref29 doi: 10.23940/ijpe.21.03.p4.289298 – volume: 14 start-page: 1013 issue: 5 year: 2022 ident: ref37 article-title: Mechanical assembly sequence determination using artificial neural networks based on selected DFA rating factors publication-title: Symmetry doi: 10.3390/sym14051013 – ident: ref8 doi: 10.1109/TASE.2021.3136006 – ident: ref32 doi: 10.1109/TIE.2018.2886798 – ident: ref6 doi: 10.1109/TRO.2022.3157147 – ident: ref10 doi: 10.1016/j.jairtraman.2013.06.001 – ident: ref39 doi: 10.1016/j.cirpj.2022.11.003 – ident: ref19 doi: 10.1109/TASE.2012.2232652 – ident: ref20 doi: 10.1007/s00170-006-0438-1 – volume: 58 start-page: 452 year: 2021 ident: ref25 article-title: Cyber-physical assembly system-based optimization for robotic assembly sequence planning publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.01.004 – volume: 54 start-page: 207 issue: 3 year: 2005 ident: ref44 article-title: An actor-critic algorithm for constrained Markov decision processes publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2004.08.007 – ident: ref14 doi: 10.1177/0954408918764459 – ident: ref21 doi: 10.1007/bf01179417 – ident: ref13 doi: 10.1109/TASE.2018.2791665 – ident: ref15 doi: 10.1007/s00170-015-7565-5 – year: 2016 ident: ref43 article-title: Neural combinatorial optimization with reinforcement learning publication-title: arXiv:1611.09940 – ident: ref17 doi: 10.1109/CoASE.2015.7294142 – ident: ref4 doi: 10.1177/0954406215584633 – ident: ref16 doi: 10.1177/0954406219842908 – ident: ref42 doi: 10.1109/ICACI.2018.8377505 – ident: ref33 doi: 10.1109/TSMC.2023.3317390 – ident: ref36 doi: 10.1109/TCYB.2021.3121080 – ident: ref41 doi: 10.1109/LRA.2023.3280816 – volume: 25 start-page: 1137 issue: 11 year: 2005 ident: ref22 article-title: A novel ant colony algorithm for assembly sequence planning publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-003-1952-z – volume: 95 start-page: 51 year: 2016 ident: ref30 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 60 start-page: 4797 issue: 15 year: 2022 ident: ref38 article-title: A decision-making method for assembly sequence planning with dynamic resources publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1937748 – ident: ref28 doi: 10.1109/TASE.2016.2622253 – ident: ref7 doi: 10.1016/j.birob.2021.100001 – ident: ref3 doi: 10.1109/TRO.2022.3198020 – ident: ref23 doi: 10.1007/s11465-020-0613-3 – volume: 69 start-page: 46 year: 2014 ident: ref31 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref40 doi: 10.1109/TNNLS.2021.3105937 – ident: ref1 doi: 10.1109/21.87086 – year: 2022 ident: ref45 article-title: Neural combinatorial optimization: A new player in the field publication-title: arXiv:2205.01356 – ident: ref26 doi: 10.1109/RCAR58764.2023.10249862 |
| SSID | ssj0024890 |
| Score | 2.3958652 |
| Snippet | This paper proposes a specific and effective real-time sequence planning method using robot manipulators to complete complex assembly tasks. Many previous... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 8952 |
| SubjectTerms | Assembly Assembly sequence planning (ASP) contact matrix Cost function Costs Manipulators neural combinatorial optimization (NCO) Optimization Planning pointer network Production reinforcement learning (RL) Robot kinematics Robots Stability analysis |
| Title | A Learning-Based Assembly Sequence Planning Method Using Neural Combinatorial Optimization With Satisfactory Generalization Ability |
| URI | https://ieeexplore.ieee.org/document/10752093 |
| Volume | 22 |
| WOSCitedRecordID | wos001358234900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyLKSx6YkFySJo7tMaBWLBSkFtEtil-ARFtUtUid-eOcHUftwsAWRVYU3dk-f76770Po2nF88TRWBEKfJGlsGBFSUpJQpZUWsemaSmyCDQZ8PBbPoVnd98IYY3zxmem4R5_L1zO1dFdlsMKZq9pIGqjBWFY1a62J9bi_UHFHAkIFpSGFGUfidpQPewAFu2knSUWSeXGydRDaUFXxQaW__8_fOUB74fSI88rdh2jLTI_Q7gan4DH6yXHgTH0jdxCiNHZ53Yn8XOFhKJvGtVIRfvT60djXDWDH0wEfhx0C0LLD4jA18RNsKZPQq4lfPxbveFj3Q8zmKxxYq-sBuS-1XbXQS783un8gQWmBKAjxC0Ip0wpOIrFKrZKlzXQsM8usKrXliTUlywzPrI4ojw0gvsRmUkojojJSgFdEcoKa09nUnCLMKWAOmRpNWZoaxqTjhlAQBcuSu6RsG93Upi--KkKNwgORSBTOT4XzUxH81EYtZ_aNgZXFz_54f452uk6f11-RXKDmYr40l2hbfYNh5ld-vvwCunfAoA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBfXgs2J95uBJSN1HstkcV2mp2FahFXtbNi8VbCulFXr2j5tkU9qLB2_LEpZlJsnky8x8HwDXluMrxaFAJvRxhENFEeOcoJgIKSQLVaRKsQna7aaDAXv2zequF0Yp5YrPVN0-uly-HIuZvSozK5zaqo14HWwQjKOgbNdaUuul7krFHgoQYYT4JGYYsNt-1msYMBjheoxZnDh5smUYWtFVcWGluffPH9oHu_78CLPS4QdgTY0Owc4Kq-AR-MmgZ019Q3cmSEloM7tD_jmHPV84DRdaRbDjFKShqxyAlqnDfNzsEQYvWzRuJid8MpvK0HdrwteP6TvsLToixpM59LzViwGZK7adV8FLs9G_byGvtYCECfJTRAiVwpxFQoG14IVOZMgTTbUopE5jrQqaqDTRMiBpqAzmi3XCOVcsKAJhEAuLj0FlNB6pEwBTYlAHx0oSirGilFt2CGHiYFGkNi1bAzcL0-dfJaVG7qBIwHLrp9z6Kfd-qoGqNfvKwNLip3-8vwJbrX6nnbcfuo9nYDuyar3uwuQcVKaTmboAm-LbGGly6ebOL-hhw-c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning-Based+Assembly+Sequence+Planning+Method+Using+Neural+Combinatorial+Optimization+With+Satisfactory+Generalization+Ability&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Hou%2C+Ruiming&rft.au=Xu%2C+Sheng&rft.au=Yang%2C+Chenguang&rft.au=Duan%2C+Jianghua&rft.date=2025-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=8952&rft.epage=8964&rft_id=info:doi/10.1109%2FTASE.2024.3493617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2024_3493617 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |