Information Sharing in Multi-Tenant Metaverse via Intent-Driven Multicasting

A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions between a user and the environment are multicast to other users by an interactive metaverse (IM) service. However, ineffective information-sh...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers Vol. 74; no. 11; pp. 3763 - 3777
Main Authors: Qiu, Yu, Chen, Min, Liang, Weifa, Ai, Lejun, Niyato, Dusit
Format: Journal Article
Language:English
Published: IEEE 01.11.2025
Subjects:
ISSN:0018-9340, 1557-9956
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions between a user and the environment are multicast to other users by an interactive metaverse (IM) service. However, ineffective information-sharing strategies intensify competitions among users for limited resources in networks, and fail to interpret optimization intent prompts conveyed in high-level natural languages, ultimately diminishing user immersion. In this paper, we explore reliable information sharing in a multi-tenant metaverse with time-varying resource capacities and costs, where IM services are unreliable and alter the volumes of data processed by them, while the service provider dynamically adjusts global intent to minimize multicast delays and costs. To this end, we first formulate the information sharing problem as a Markov decision process and show its NP-hardness. Then, we propose a learning-based system GTP, which combines the proximal policy optimization reinforcement learning with feature extraction networks, including graph attention network and gated recurrent unit, and a Transformer encoder for multi-feature comparison to process a sequence of incoming multicast requests without the knowledge of future arrival information. The GTP operates through three modules: a deployer that allocates primary and backup IM services across the network to minimize a weighted goal of server computation costs and communication distances between users and services, an intent extractor that dynamically infers provider intent conveyed in natural language, and a router that constructs on-demand multicast routing trees adhering to users, the provider, and network constraints. We finally conduct theoretical and empirical analysis on the proposed algorithms for the system. Experimental results show that the proposed algorithms are promising, and superior to their comparison baseline algorithms.
AbstractList A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions between a user and the environment are multicast to other users by an interactive metaverse (IM) service. However, ineffective information-sharing strategies intensify competitions among users for limited resources in networks, and fail to interpret optimization intent prompts conveyed in high-level natural languages, ultimately diminishing user immersion. In this paper, we explore reliable information sharing in a multi-tenant metaverse with time-varying resource capacities and costs, where IM services are unreliable and alter the volumes of data processed by them, while the service provider dynamically adjusts global intent to minimize multicast delays and costs. To this end, we first formulate the information sharing problem as a Markov decision process and show its NP-hardness. Then, we propose a learning-based system GTP, which combines the proximal policy optimization reinforcement learning with feature extraction networks, including graph attention network and gated recurrent unit, and a Transformer encoder for multi-feature comparison to process a sequence of incoming multicast requests without the knowledge of future arrival information. The GTP operates through three modules: a deployer that allocates primary and backup IM services across the network to minimize a weighted goal of server computation costs and communication distances between users and services, an intent extractor that dynamically infers provider intent conveyed in natural language, and a router that constructs on-demand multicast routing trees adhering to users, the provider, and network constraints. We finally conduct theoretical and empirical analysis on the proposed algorithms for the system. Experimental results show that the proposed algorithms are promising, and superior to their comparison baseline algorithms.
Author Liang, Weifa
Chen, Min
Ai, Lejun
Qiu, Yu
Niyato, Dusit
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-9586-7875
  surname: Qiu
  fullname: Qiu, Yu
  email: csqiuyu@mail.scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Min
  orcidid: 0000-0002-0960-4447
  surname: Chen
  fullname: Chen, Min
  email: minchen@ieee.org
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Weifa
  orcidid: 0000-0002-8207-6740
  surname: Liang
  fullname: Liang, Weifa
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Lejun
  orcidid: 0009-0004-8819-8556
  surname: Ai
  fullname: Ai, Lejun
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Dusit
  orcidid: 0000-0002-7442-7416
  surname: Niyato
  fullname: Niyato, Dusit
  organization: College of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNpFkE1LAzEURYNUsK2u3biYP5D2vclk0ixl_Cq0uHBcD5n0RSNtRpJY8N_b0oKry4V77uJM2CgMgRi7RZghgp63zayEUs5EDUKVcMHGKKXiWst6xMYAuOBaVHDFJil9AUBdgh6z1TK4Ie5M9kMo3j5N9OGj8KFY_2yz5y0FE3Kxpmz2FBMVe2-KZcgUMn-Ifk_noTUpH8BrdunMNtHNOafs_emxbV746vV52dyvuC1xkXklTAUbrJBKQkPaoNK2753aKKqt0NaJTSWccYfWY99bsVCqF1ZaVIAkxZTNT782DilFct139DsTfzuE7iija5vuKKM7yzgQdyfCE9H_GrGSAoX4AxcNXhs
CODEN ITCOB4
Cites_doi 10.1109/INFOCOM48880.2022.9796811
10.1109/MWSCAS.2017.8053243
10.1109/JIOT.2024.3397674
10.1109/TSC.2022.3166553
10.1109/TPAMI.2022.3152247
10.1109/TMC.2024.3356178
10.1109/COMST.2024.3392642
10.1109/TVT.2023.3238771
10.1109/INFOCOM53939.2023.10229064
10.1109/tmc.2025.3582084
10.1504/ijmmno.2013.056532
10.1109/TNSM.2024.3402275
10.1109/TWC.2022.3157606
10.1109/INFOCOM48880.2022.9796918
10.1109/TMC.2024.3396612
10.1109/TMC.2024.3425896
10.1109/GLOBECOM42002.2020.9348034
10.1109/INFOCOM53939.2023.10229034
10.1109/TMC.2023.3282645
10.1109/OJCOMS.2024.3349465
10.1109/COMST.2022.3215919
10.1109/INFOCOMWKSHPS61880.2024.10620667
10.1109/TITS.2022.3140801
10.1109/TMC.2024.3481276
10.1109/JIOT.2023.3268339
10.1109/TPDS.2019.2937524
10.1145/3651890.3672268
10.1109/JSAC.2023.3287547
10.1109/TPDS.2020.2983918
10.1109/TMC.2025.3540017
10.1109/JIOT.2024.3446699
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TC.2025.3603720
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 3777
ExternalDocumentID 10_1109_TC_2025_3603720
11145313
Genre orig-research
GroupedDBID --Z
-DZ
-~X
.55
.DC
0R~
29I
3EH
3O-
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABUFD
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
MVM
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
TWZ
UHB
UKR
UPT
VH1
X7M
XJT
XOL
XZL
YXB
YYQ
YZZ
ZCG
AAYXX
CITATION
ID FETCH-LOGICAL-c218t-43a40d141e2e1ae9a179cbbf7d7e6c39cf3d43fafe6cb1bbc3877b3c5c1701e53
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592236300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sat Nov 29 07:11:58 EST 2025
Wed Oct 15 14:20:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-43a40d141e2e1ae9a179cbbf7d7e6c39cf3d43fafe6cb1bbc3877b3c5c1701e53
ORCID 0000-0002-9586-7875
0000-0002-0960-4447
0000-0002-7442-7416
0000-0002-8207-6740
0009-0004-8819-8556
PageCount 15
ParticipantIDs crossref_primary_10_1109_TC_2025_3603720
ieee_primary_11145313
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref16
ref19
Jacobs (ref10) 2021
ref18
Schulman (ref23) 2017
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
Veličković (ref27) 2017
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.1109/INFOCOM48880.2022.9796811
– ident: ref4
  doi: 10.1109/MWSCAS.2017.8053243
– ident: ref9
  doi: 10.1109/JIOT.2024.3397674
– ident: ref12
  doi: 10.1109/TSC.2022.3166553
– ident: ref7
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref5
  doi: 10.1109/TMC.2024.3356178
– ident: ref22
  doi: 10.1109/COMST.2024.3392642
– ident: ref1
  doi: 10.1109/TVT.2023.3238771
– ident: ref3
  doi: 10.1109/INFOCOM53939.2023.10229064
– ident: ref18
  doi: 10.1109/tmc.2025.3582084
– ident: ref8
  doi: 10.1504/ijmmno.2013.056532
– ident: ref30
  doi: 10.1109/TNSM.2024.3402275
– start-page: 625
  volume-title: Proc. USENIX Annu. Tech. Conf. (USENIX ATC)
  year: 2021
  ident: ref10
  article-title: Hey, Lumi! using natural language for intent-based network management
– ident: ref20
  doi: 10.1109/TWC.2022.3157606
– ident: ref2
  doi: 10.1109/INFOCOM48880.2022.9796918
– ident: ref19
  doi: 10.1109/TMC.2024.3396612
– ident: ref17
  doi: 10.1109/TMC.2024.3425896
– year: 2017
  ident: ref27
  article-title: Graph attention networks
– year: 2017
  ident: ref23
  article-title: Proximal policy optimization algorithms
– ident: ref34
  doi: 10.1109/GLOBECOM42002.2020.9348034
– ident: ref25
  doi: 10.1109/INFOCOM53939.2023.10229034
– ident: ref26
  doi: 10.1109/TMC.2023.3282645
– ident: ref31
  doi: 10.1109/OJCOMS.2024.3349465
– ident: ref11
  doi: 10.1109/COMST.2022.3215919
– ident: ref33
  doi: 10.1109/INFOCOMWKSHPS61880.2024.10620667
– ident: ref16
  doi: 10.1109/TITS.2022.3140801
– ident: ref29
  doi: 10.1109/TMC.2024.3481276
– ident: ref14
  doi: 10.1109/JIOT.2023.3268339
– ident: ref15
  doi: 10.1109/TPDS.2019.2937524
– ident: ref28
  doi: 10.1145/3651890.3672268
– ident: ref6
  doi: 10.1109/JSAC.2023.3287547
– ident: ref21
  doi: 10.1109/TPDS.2020.2983918
– ident: ref32
  doi: 10.1109/TMC.2025.3540017
– ident: ref13
  doi: 10.1109/JIOT.2024.3446699
SSID ssj0006209
Score 2.4607017
Snippet A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 3763
SubjectTerms Computer network reliability
Costs
Delays
Information sharing
intent network
Metaverse
Multi-tenant
multicast
Multicast algorithms
Optimization
Reliability
Routing
Servers
Title Information Sharing in Multi-Tenant Metaverse via Intent-Driven Multicasting
URI https://ieeexplore.ieee.org/document/11145313
Volume 74
WOSCitedRecordID wos001592236300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADhVJEeckDA0vapHbiZkSFigEqhiB1i-zzWeqSojbt78d2XCgDA1tiOVJ0byffd0fIvbJVqkxHYI1XyIgrbaIcrD-iNpnKAZjm2g-bELPZeD7P3wNZ3XNhENGDz3DgLv2_fL2EjftUNrR-ya3NsBZpCSEastZ32M12eI7EejDjcejjk8T5sJjYg-AoHbAsdkNZfqWgvZkqPqVMO_98mVNyEmpH-tgo-4wcYNUlnd1cBhrctEuO95oMnpPXwDhyGqCuP7NdpYuKeuptVKBDwtA3rKUDaCDdLiT1uPY6elq5UNhsBLl2AOke-Zg-F5OXKMxQiMAm7zriTPJYJzzBESYSc2kdEJQyQgvMgOVgrDaYkcbeqUQpYGMhFIMUXKN2TNkFaVfLCi8JlTYYaAATWyVynXGVGikM4yZlmNkqq08edmItP5tWGaU_YsR5WUxKp4EyaKBPek6gP9uCLK_-WL8mR-7xhgN4Q9r1aoO35BC29WK9uvN28AVZjrKQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGCqWI8vTAwJKSxE7SjKhQFdFWDEHqFvlxlrqkqE37-7GdFMrAwJZYVhTd28n33QHcC1Ol8iiUxngT7jGhtJdK44-odCxSKaliyg2bSCaT3nSavtdkdceFQUQHPsOuvXT_8tVcruynskfjl8zYDN2FvYixMKjoWt-BN94gOgLjw5T5dSefwE8fs745CoZRl8a-HcvyKwltTVVxSWXQ_OfrnMBxXT2Sp0rdp7CDRQuam8kMpHbUFhxttRk8g1HNObI6ILZDs1kls4I48q2XocXCkDGW3EI0kKxnnDhke-k9L2wwrDZKvrQQ6TZ8DF6y_tCrpyh40qTv0mOUM18FLMAQA44pNy4ohdCJSjCWNJXa6INqrs2dCISQtJckgspI2lbtGNFzaBTzAi-AcBMOlJTaN2pkKmYi0jzRlOmIYmzqrA48bMSaf1bNMnJ3yPDTPOvnVgN5rYEOtK1Af7bVsrz8Y_0ODobZeJSPXidvV3BoH1UxAq-hUS5WeAP7cl3OlotbZxNf0e-11w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Sharing+in+Multi-Tenant+Metaverse+via+Intent-Driven+Multicasting&rft.jtitle=IEEE+transactions+on+computers&rft.au=Qiu%2C+Yu&rft.au=Chen%2C+Min&rft.au=Liang%2C+Weifa&rft.au=Ai%2C+Lejun&rft.date=2025-11-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=74&rft.issue=11&rft.spage=3763&rft.epage=3777&rft_id=info:doi/10.1109%2FTC.2025.3603720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2025_3603720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon