Information Sharing in Multi-Tenant Metaverse via Intent-Driven Multicasting
A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions between a user and the environment are multicast to other users by an interactive metaverse (IM) service. However, ineffective information-sh...
Saved in:
| Published in: | IEEE transactions on computers Vol. 74; no. 11; pp. 3763 - 3777 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.11.2025
|
| Subjects: | |
| ISSN: | 0018-9340, 1557-9956 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions between a user and the environment are multicast to other users by an interactive metaverse (IM) service. However, ineffective information-sharing strategies intensify competitions among users for limited resources in networks, and fail to interpret optimization intent prompts conveyed in high-level natural languages, ultimately diminishing user immersion. In this paper, we explore reliable information sharing in a multi-tenant metaverse with time-varying resource capacities and costs, where IM services are unreliable and alter the volumes of data processed by them, while the service provider dynamically adjusts global intent to minimize multicast delays and costs. To this end, we first formulate the information sharing problem as a Markov decision process and show its NP-hardness. Then, we propose a learning-based system GTP, which combines the proximal policy optimization reinforcement learning with feature extraction networks, including graph attention network and gated recurrent unit, and a Transformer encoder for multi-feature comparison to process a sequence of incoming multicast requests without the knowledge of future arrival information. The GTP operates through three modules: a deployer that allocates primary and backup IM services across the network to minimize a weighted goal of server computation costs and communication distances between users and services, an intent extractor that dynamically infers provider intent conveyed in natural language, and a router that constructs on-demand multicast routing trees adhering to users, the provider, and network constraints. We finally conduct theoretical and empirical analysis on the proposed algorithms for the system. Experimental results show that the proposed algorithms are promising, and superior to their comparison baseline algorithms. |
|---|---|
| AbstractList | A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions between a user and the environment are multicast to other users by an interactive metaverse (IM) service. However, ineffective information-sharing strategies intensify competitions among users for limited resources in networks, and fail to interpret optimization intent prompts conveyed in high-level natural languages, ultimately diminishing user immersion. In this paper, we explore reliable information sharing in a multi-tenant metaverse with time-varying resource capacities and costs, where IM services are unreliable and alter the volumes of data processed by them, while the service provider dynamically adjusts global intent to minimize multicast delays and costs. To this end, we first formulate the information sharing problem as a Markov decision process and show its NP-hardness. Then, we propose a learning-based system GTP, which combines the proximal policy optimization reinforcement learning with feature extraction networks, including graph attention network and gated recurrent unit, and a Transformer encoder for multi-feature comparison to process a sequence of incoming multicast requests without the knowledge of future arrival information. The GTP operates through three modules: a deployer that allocates primary and backup IM services across the network to minimize a weighted goal of server computation costs and communication distances between users and services, an intent extractor that dynamically infers provider intent conveyed in natural language, and a router that constructs on-demand multicast routing trees adhering to users, the provider, and network constraints. We finally conduct theoretical and empirical analysis on the proposed algorithms for the system. Experimental results show that the proposed algorithms are promising, and superior to their comparison baseline algorithms. |
| Author | Liang, Weifa Chen, Min Ai, Lejun Qiu, Yu Niyato, Dusit |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-9586-7875 surname: Qiu fullname: Qiu, Yu email: csqiuyu@mail.scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Min orcidid: 0000-0002-0960-4447 surname: Chen fullname: Chen, Min email: minchen@ieee.org organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Weifa orcidid: 0000-0002-8207-6740 surname: Liang fullname: Liang, Weifa organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China – sequence: 4 givenname: Lejun orcidid: 0009-0004-8819-8556 surname: Ai fullname: Ai, Lejun organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Dusit orcidid: 0000-0002-7442-7416 surname: Niyato fullname: Niyato, Dusit organization: College of Computer Science and Engineering, Nanyang Technological University, Singapore |
| BookMark | eNpFkE1LAzEURYNUsK2u3biYP5D2vclk0ixl_Cq0uHBcD5n0RSNtRpJY8N_b0oKry4V77uJM2CgMgRi7RZghgp63zayEUs5EDUKVcMHGKKXiWst6xMYAuOBaVHDFJil9AUBdgh6z1TK4Ie5M9kMo3j5N9OGj8KFY_2yz5y0FE3Kxpmz2FBMVe2-KZcgUMn-Ifk_noTUpH8BrdunMNtHNOafs_emxbV746vV52dyvuC1xkXklTAUbrJBKQkPaoNK2753aKKqt0NaJTSWccYfWY99bsVCqF1ZaVIAkxZTNT782DilFct139DsTfzuE7iija5vuKKM7yzgQdyfCE9H_GrGSAoX4AxcNXhs |
| CODEN | ITCOB4 |
| Cites_doi | 10.1109/INFOCOM48880.2022.9796811 10.1109/MWSCAS.2017.8053243 10.1109/JIOT.2024.3397674 10.1109/TSC.2022.3166553 10.1109/TPAMI.2022.3152247 10.1109/TMC.2024.3356178 10.1109/COMST.2024.3392642 10.1109/TVT.2023.3238771 10.1109/INFOCOM53939.2023.10229064 10.1109/tmc.2025.3582084 10.1504/ijmmno.2013.056532 10.1109/TNSM.2024.3402275 10.1109/TWC.2022.3157606 10.1109/INFOCOM48880.2022.9796918 10.1109/TMC.2024.3396612 10.1109/TMC.2024.3425896 10.1109/GLOBECOM42002.2020.9348034 10.1109/INFOCOM53939.2023.10229034 10.1109/TMC.2023.3282645 10.1109/OJCOMS.2024.3349465 10.1109/COMST.2022.3215919 10.1109/INFOCOMWKSHPS61880.2024.10620667 10.1109/TITS.2022.3140801 10.1109/TMC.2024.3481276 10.1109/JIOT.2023.3268339 10.1109/TPDS.2019.2937524 10.1145/3651890.3672268 10.1109/JSAC.2023.3287547 10.1109/TPDS.2020.2983918 10.1109/TMC.2025.3540017 10.1109/JIOT.2024.3446699 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TC.2025.3603720 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9956 |
| EndPage | 3777 |
| ExternalDocumentID | 10_1109_TC_2025_3603720 11145313 |
| Genre | orig-research |
| GroupedDBID | --Z -DZ -~X .55 .DC 0R~ 29I 3EH 3O- 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABUFD ABVLG ACGFO ACIWK ACNCT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ MVM O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 TWZ UHB UKR UPT VH1 X7M XJT XOL XZL YXB YYQ YZZ ZCG AAYXX CITATION |
| ID | FETCH-LOGICAL-c218t-43a40d141e2e1ae9a179cbbf7d7e6c39cf3d43fafe6cb1bbc3877b3c5c1701e53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592236300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9340 |
| IngestDate | Sat Nov 29 07:11:58 EST 2025 Wed Oct 15 14:20:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c218t-43a40d141e2e1ae9a179cbbf7d7e6c39cf3d43fafe6cb1bbc3877b3c5c1701e53 |
| ORCID | 0000-0002-9586-7875 0000-0002-0960-4447 0000-0002-7442-7416 0000-0002-8207-6740 0009-0004-8819-8556 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TC_2025_3603720 ieee_primary_11145313 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on computers |
| PublicationTitleAbbrev | TC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref16 ref19 Jacobs (ref10) 2021 ref18 Schulman (ref23) 2017 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 Veličković (ref27) 2017 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref24 doi: 10.1109/INFOCOM48880.2022.9796811 – ident: ref4 doi: 10.1109/MWSCAS.2017.8053243 – ident: ref9 doi: 10.1109/JIOT.2024.3397674 – ident: ref12 doi: 10.1109/TSC.2022.3166553 – ident: ref7 doi: 10.1109/TPAMI.2022.3152247 – ident: ref5 doi: 10.1109/TMC.2024.3356178 – ident: ref22 doi: 10.1109/COMST.2024.3392642 – ident: ref1 doi: 10.1109/TVT.2023.3238771 – ident: ref3 doi: 10.1109/INFOCOM53939.2023.10229064 – ident: ref18 doi: 10.1109/tmc.2025.3582084 – ident: ref8 doi: 10.1504/ijmmno.2013.056532 – ident: ref30 doi: 10.1109/TNSM.2024.3402275 – start-page: 625 volume-title: Proc. USENIX Annu. Tech. Conf. (USENIX ATC) year: 2021 ident: ref10 article-title: Hey, Lumi! using natural language for intent-based network management – ident: ref20 doi: 10.1109/TWC.2022.3157606 – ident: ref2 doi: 10.1109/INFOCOM48880.2022.9796918 – ident: ref19 doi: 10.1109/TMC.2024.3396612 – ident: ref17 doi: 10.1109/TMC.2024.3425896 – year: 2017 ident: ref27 article-title: Graph attention networks – year: 2017 ident: ref23 article-title: Proximal policy optimization algorithms – ident: ref34 doi: 10.1109/GLOBECOM42002.2020.9348034 – ident: ref25 doi: 10.1109/INFOCOM53939.2023.10229034 – ident: ref26 doi: 10.1109/TMC.2023.3282645 – ident: ref31 doi: 10.1109/OJCOMS.2024.3349465 – ident: ref11 doi: 10.1109/COMST.2022.3215919 – ident: ref33 doi: 10.1109/INFOCOMWKSHPS61880.2024.10620667 – ident: ref16 doi: 10.1109/TITS.2022.3140801 – ident: ref29 doi: 10.1109/TMC.2024.3481276 – ident: ref14 doi: 10.1109/JIOT.2023.3268339 – ident: ref15 doi: 10.1109/TPDS.2019.2937524 – ident: ref28 doi: 10.1145/3651890.3672268 – ident: ref6 doi: 10.1109/JSAC.2023.3287547 – ident: ref21 doi: 10.1109/TPDS.2020.2983918 – ident: ref32 doi: 10.1109/TMC.2025.3540017 – ident: ref13 doi: 10.1109/JIOT.2024.3446699 |
| SSID | ssj0006209 |
| Score | 2.4607017 |
| Snippet | A multi-tenant metaverse enables multiple users in a common virtual world to interact with each other online. Information sharing will occur when interactions... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 3763 |
| SubjectTerms | Computer network reliability Costs Delays Information sharing intent network Metaverse Multi-tenant multicast Multicast algorithms Optimization Reliability Routing Servers |
| Title | Information Sharing in Multi-Tenant Metaverse via Intent-Driven Multicasting |
| URI | https://ieeexplore.ieee.org/document/11145313 |
| Volume | 74 |
| WOSCitedRecordID | wos001592236300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006209 issn: 0018-9340 databaseCode: RIE dateStart: 19680101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADhVJEeckDA0vapHbiZkSFigEqhiB1i-zzWeqSojbt78d2XCgDA1tiOVJ0byffd0fIvbJVqkxHYI1XyIgrbaIcrD-iNpnKAZjm2g-bELPZeD7P3wNZ3XNhENGDz3DgLv2_fL2EjftUNrR-ya3NsBZpCSEastZ32M12eI7EejDjcejjk8T5sJjYg-AoHbAsdkNZfqWgvZkqPqVMO_98mVNyEmpH-tgo-4wcYNUlnd1cBhrctEuO95oMnpPXwDhyGqCuP7NdpYuKeuptVKBDwtA3rKUDaCDdLiT1uPY6elq5UNhsBLl2AOke-Zg-F5OXKMxQiMAm7zriTPJYJzzBESYSc2kdEJQyQgvMgOVgrDaYkcbeqUQpYGMhFIMUXKN2TNkFaVfLCi8JlTYYaAATWyVynXGVGikM4yZlmNkqq08edmItP5tWGaU_YsR5WUxKp4EyaKBPek6gP9uCLK_-WL8mR-7xhgN4Q9r1aoO35BC29WK9uvN28AVZjrKQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGCqWI8vTAwJKSxE7SjKhQFdFWDEHqFvlxlrqkqE37-7GdFMrAwJZYVhTd28n33QHcC1Ol8iiUxngT7jGhtJdK44-odCxSKaliyg2bSCaT3nSavtdkdceFQUQHPsOuvXT_8tVcruynskfjl8zYDN2FvYixMKjoWt-BN94gOgLjw5T5dSefwE8fs745CoZRl8a-HcvyKwltTVVxSWXQ_OfrnMBxXT2Sp0rdp7CDRQuam8kMpHbUFhxttRk8g1HNObI6ILZDs1kls4I48q2XocXCkDGW3EI0kKxnnDhke-k9L2wwrDZKvrQQ6TZ8DF6y_tCrpyh40qTv0mOUM18FLMAQA44pNy4ohdCJSjCWNJXa6INqrs2dCISQtJckgspI2lbtGNFzaBTzAi-AcBMOlJTaN2pkKmYi0jzRlOmIYmzqrA48bMSaf1bNMnJ3yPDTPOvnVgN5rYEOtK1Af7bVsrz8Y_0ODobZeJSPXidvV3BoH1UxAq-hUS5WeAP7cl3OlotbZxNf0e-11w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Sharing+in+Multi-Tenant+Metaverse+via+Intent-Driven+Multicasting&rft.jtitle=IEEE+transactions+on+computers&rft.au=Qiu%2C+Yu&rft.au=Chen%2C+Min&rft.au=Liang%2C+Weifa&rft.au=Ai%2C+Lejun&rft.date=2025-11-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=74&rft.issue=11&rft.spage=3763&rft.epage=3777&rft_id=info:doi/10.1109%2FTC.2025.3603720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2025_3603720 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |