Daytime radiative cooling purposes with selective multilayer design based on Ta2O5
Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm. Historically, nighttime radiative cooling purposes have been investigated for a long time, but daytime radiative cooling has not been yet extensively...
Uložené v:
| Vydané v: | Optik (Stuttgart) Ročník 214; s. 164811 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier GmbH
01.07.2020
|
| Predmet: | |
| ISSN: | 0030-4026, 1618-1336 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm. Historically, nighttime radiative cooling purposes have been investigated for a long time, but daytime radiative cooling has not been yet extensively studied. The daytime cooling operation requires a cover shield, which not only provides extremely high mid-infrared emissivity, but also rejects solar radiation. In this paper, we study numerically a multilayer structure that has both high emissivity in atmospheric window and high reflectivity in the visible and near infrared spectrums, which are difficult to achieve simultaneously. In this study, we propose alternative design for 2D thin film coatings, with periodic segments of Ta2O5 and SiO2. The selective optical properties of our design have been optimized in order to improve cooling performance. In this context the transfer matrix formalism was applied to determine the average optical properties. The multilayer conception can provide a high-performance cooling system exceeding 87 W/m2 at an ambient temperature of 300K under direct sunlight, giving to a temperature reduction of 20 °C. More than 95 % of the solar irradiation can be reflected, and the average emissivity in the sky window is larger than 85 %. We believe the proposed design is suitable for daytime radiative cooling purposes and temperature control applications. |
|---|---|
| AbstractList | Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm. Historically, nighttime radiative cooling purposes have been investigated for a long time, but daytime radiative cooling has not been yet extensively studied. The daytime cooling operation requires a cover shield, which not only provides extremely high mid-infrared emissivity, but also rejects solar radiation. In this paper, we study numerically a multilayer structure that has both high emissivity in atmospheric window and high reflectivity in the visible and near infrared spectrums, which are difficult to achieve simultaneously. In this study, we propose alternative design for 2D thin film coatings, with periodic segments of Ta2O5 and SiO2. The selective optical properties of our design have been optimized in order to improve cooling performance. In this context the transfer matrix formalism was applied to determine the average optical properties. The multilayer conception can provide a high-performance cooling system exceeding 87 W/m2 at an ambient temperature of 300K under direct sunlight, giving to a temperature reduction of 20 °C. More than 95 % of the solar irradiation can be reflected, and the average emissivity in the sky window is larger than 85 %. We believe the proposed design is suitable for daytime radiative cooling purposes and temperature control applications. |
| ArticleNumber | 164811 |
| Author | Mazroui, M. Saadouni, K. Mabchour, G. Benlattar, M. |
| Author_xml | – sequence: 1 givenname: G. surname: Mabchour fullname: Mabchour, G. organization: Laboratoire d’Ingénierie des Procédés et Optimisation des Systèmes Industriels, Ecole Nationale des Sciences Appliquées Khouribga, Université Hassan 1er, 26000, Settat, Morocco – sequence: 2 givenname: M. surname: Benlattar fullname: Benlattar, M. email: benlattar1975@gmail.com organization: Condensed Matter Physics Laboratory, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca – sequence: 3 givenname: K. surname: Saadouni fullname: Saadouni, K. organization: Laboratoire d’Ingénierie des Procédés et Optimisation des Systèmes Industriels, Ecole Nationale des Sciences Appliquées Khouribga, Université Hassan 1er, 26000, Settat, Morocco – sequence: 4 givenname: M. surname: Mazroui fullname: Mazroui, M. organization: Condensed Matter Physics Laboratory, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca |
| BookMark | eNqFkMtqwzAQRUVJoUnaL-hGP-BUI9myveiipE8IBEq6FrI8SmUcK0hOSv6-TtJVF-3qwlzOwD0TMup8h4TcApsBA3nXzFzTop9xxoeLTAuACzIGCUUCQsgRGTMmWJIyLq_IJMaGMZbnLB-T90d96N0GadC1073bIzXet65b0-0ubH3ESL9c_0kjtmhO_WbX9q7VBwy0xujWHa10xJr6jq40X2bX5NLqNuLNT07Jx_PTav6aLJYvb_OHRWI4FH0iUp5qUepCGyktVHmeARNpacuSQVoaqJnmFkAbbjNrs6oyQmZWlHlW5JWtxZSU578m-BgDWmVcP0zwXR-0axUwdZSjGnWSo45y1FnOwIpf7Da4jQ6Hf6j7M4XDrL3DoKJx2BmsXRjkqNq7P_lvZP-Bxg |
| CitedBy_id | crossref_primary_10_1016_j_energy_2023_130073 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125303 crossref_primary_10_1016_j_applthermaleng_2021_116776 crossref_primary_10_1016_j_solmat_2021_111117 crossref_primary_10_1016_j_coco_2023_101717 crossref_primary_10_1515_nanoph_2025_0159 crossref_primary_10_1002_adom_202002226 crossref_primary_10_1016_j_solmat_2023_112587 crossref_primary_10_3390_atmos12091198 crossref_primary_10_1016_j_optcom_2020_126231 crossref_primary_10_1016_j_optcom_2021_127323 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125902 crossref_primary_10_1088_1361_6463_ac3701 crossref_primary_10_1016_j_nanoen_2025_111392 crossref_primary_10_1364_AO_413041 crossref_primary_10_1016_j_matpr_2023_11_018 crossref_primary_10_1002_er_7981 crossref_primary_10_1016_j_uclim_2022_101137 crossref_primary_10_1016_j_ijleo_2023_170711 crossref_primary_10_1016_j_optmat_2024_116037 crossref_primary_10_1016_j_mtcomm_2022_103530 crossref_primary_10_1016_j_nanoen_2020_105517 crossref_primary_10_1016_j_applthermaleng_2025_127431 crossref_primary_10_1364_AO_500775 crossref_primary_10_1016_j_matpr_2022_06_027 crossref_primary_10_1364_AO_403373 |
| Cites_doi | 10.1016/0038-092X(78)90195-0 10.1016/0038-092X(75)90062-6 10.1364/OE.18.00A314 10.1016/j.jqsrt.2017.01.014 10.1103/PhysRevLett.93.213905 10.1016/j.optcom.2005.06.033 10.1364/OE.14.008785 10.1016/0165-1633(84)90067-4 10.1063/1.329270 10.1021/am900200r 10.1016/j.jqsrt.2017.03.046 10.1038/417052a 10.1364/AO.50.003201 10.1016/0040-6090(82)90648-4 10.1016/0306-2619(77)90015-0 10.1021/nl903271d 10.1021/cm2019789 10.1364/OE.19.020462 10.1016/j.tsf.2011.03.023 10.1364/OE.17.015145 10.1038/416061a 10.1021/nl4004283 10.1016/j.ijheatmasstransfer.2016.08.009 10.1063/1.3093698 10.1063/1.2936997 10.1016/0927-0248(94)00200-2 10.1016/0038-092X(83)90068-3 10.1063/1.91406 10.1021/acsphotonics.6b00991 10.1002/adom.201570046 10.1016/j.proenv.2017.03.158 10.1364/OE.19.020642 10.1038/nature13883 10.1088/2040-8978/14/2/024005 10.1016/j.solmat.2018.01.015 10.1016/0038-092X(82)90245-6 10.1103/PhysRevB.55.10105 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier GmbH |
| Copyright_xml | – notice: 2020 Elsevier GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijleo.2020.164811 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1618-1336 |
| ExternalDocumentID | 10_1016_j_ijleo_2020_164811 S0030402620306471 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K TN5 VOH XOL ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c218t-3424a39a8ac66f1b77510349f990149c1d0a2f11ac2f5ff5bbc365f397587bfd3 |
| ISSN | 0030-4026 |
| IngestDate | Sat Nov 29 07:26:40 EST 2025 Tue Nov 18 22:36:05 EST 2025 Fri Feb 23 02:46:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reflectivity Emissivity Radiative cooling Ta2O5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c218t-3424a39a8ac66f1b77510349f990149c1d0a2f11ac2f5ff5bbc365f397587bfd3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijleo_2020_164811 crossref_primary_10_1016_j_ijleo_2020_164811 elsevier_sciencedirect_doi_10_1016_j_ijleo_2020_164811 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 2020-07-00 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Optik (Stuttgart) |
| PublicationYear | 2020 |
| Publisher | Elsevier GmbH |
| Publisher_xml | – name: Elsevier GmbH |
| References | Gentle, Smith (bib0035) 2010; 10 Eden, Aaswath, Shanhui (bib0230) 2013; 13 Zeyghami, Yogi Goswami, Stefanakos (bib0080) 2018; 178 Neghabi, Behjat, Ghorashi, Salehi (bib0190) 2011; 519 Kou, Jurado, Chen, Fan, Minnich (bib0065) 2017; 4 Pardo, Megademini, André (bib0175) 1988; 23 Bermel, Ghebrebrhan, Chan, Yeng, Araghchini, Hamam (bib0100) 2010; 18 Wu, Neuner, John, Milder, Zollars, Savoy (bib0115) 2012; 14 Greffet, Carminati, Joulain, Mulet, Mainguy, Chen (bib0125) 2002; 416 Luo, Narayanaswamy, Chen, Joannopoulos (bib0130) 2004; 93 Naftaly, Dudley (bib0220) 2011; 50 Catalanotti, Cuomo, Piro, Ruggi, Silvestrini, Troise (bib0005) 1975; 17 Berdahl, Fromberg (bib0215) 1982; 29 Arpin, Losego, Braun (bib0150) 2011; 23 Bird, Hulstrom, Lewis (bib0210) 1983; 30 Harrison, R.Walton (bib0015) 1978; 20 Family, Pinar Mengüç (bib0090) 2017; 38 Granqvist, Hjortsberg, Eriksson (bib0030) 1982; 90 Benlattar, Oualim, Harmouchi, Mouhsen, Belafhal (bib0045) 2005; 256 Wang, Hu, Pu, Huang, Zhao, Feng (bib0155) 2011; 19 Hossain (bib0195) 2015; 3 Fleming, Lin, El-Kady, Biswas, Ho (bib0095) 2002; 417 Rephaeli, Fan (bib0145) 2008; 92 Zhang, Li, Feng, Zhu, Xiao, Zhou (bib0160) 2011; 19 Nilsson, Niklasson (bib0050) 1995; 37 Fleming, Lin, El-Kady, Biswas (bib0140) 2002; 417 Suryawanshi, Lin (bib0040) 2009; 1 Kecebas, Menguc, Kosar, Sendur (bib0055) 2017; 198 . Eriksson, Lushiku, Granqvist (bib0085) 1984; 11 Xiaofeng, Jianjun, Huafeng, Sihai (bib0105) 2010; 108 Chan, Solj ˇacíc, Joannopoulos (bib0135) 2006; 14 Abelès (bib0170) 1950; 5 Howell, Mengüç, Siegel (bib0200) 2010 Granqvist, Hjortsberg (bib0020) 1980; 36 Huang, Ruan (bib0070) 2017; 104 Rephaeli, Fan (bib0110) 2009; 17 Gall, Olivier, Greffet (bib0120) 1997; 55 Palik (bib0180) 1985 Macleod (bib0165) 2001 Gemini observatory. IR Transmission Spectra. Ginn, Shelton, Krenz, Lail, Boreman (bib0225) 2009; 105 Taylor, Yang, Wang (bib0185) 2017; 197 Family, Menguc (bib0075) 2017; 38 Granqvist, Hjortsberg (bib0025) 1981; 52 Bartoli, Catalanotti, Coluzzi, Cuomo, Silvestrini, Troise (bib0010) 1977; 3 Raman, Anoma, Zhu, Rephaeli, Fan (bib0060) 2014; 515 Howell (10.1016/j.ijleo.2020.164811_bib0200) 2010 Gentle (10.1016/j.ijleo.2020.164811_bib0035) 2010; 10 Bermel (10.1016/j.ijleo.2020.164811_bib0100) 2010; 18 Eden (10.1016/j.ijleo.2020.164811_bib0230) 2013; 13 Kecebas (10.1016/j.ijleo.2020.164811_bib0055) 2017; 198 Luo (10.1016/j.ijleo.2020.164811_bib0130) 2004; 93 Gall (10.1016/j.ijleo.2020.164811_bib0120) 1997; 55 Abelès (10.1016/j.ijleo.2020.164811_bib0170) 1950; 5 Granqvist (10.1016/j.ijleo.2020.164811_bib0025) 1981; 52 Fleming (10.1016/j.ijleo.2020.164811_bib0140) 2002; 417 Chan (10.1016/j.ijleo.2020.164811_bib0135) 2006; 14 Granqvist (10.1016/j.ijleo.2020.164811_bib0030) 1982; 90 Xiaofeng (10.1016/j.ijleo.2020.164811_bib0105) 2010; 108 Rephaeli (10.1016/j.ijleo.2020.164811_bib0110) 2009; 17 Naftaly (10.1016/j.ijleo.2020.164811_bib0220) 2011; 50 Granqvist (10.1016/j.ijleo.2020.164811_bib0020) 1980; 36 Kou (10.1016/j.ijleo.2020.164811_bib0065) 2017; 4 Family (10.1016/j.ijleo.2020.164811_bib0075) 2017; 38 10.1016/j.ijleo.2020.164811_bib0205 Suryawanshi (10.1016/j.ijleo.2020.164811_bib0040) 2009; 1 Hossain (10.1016/j.ijleo.2020.164811_bib0195) 2015; 3 Ginn (10.1016/j.ijleo.2020.164811_bib0225) 2009; 105 Neghabi (10.1016/j.ijleo.2020.164811_bib0190) 2011; 519 Fleming (10.1016/j.ijleo.2020.164811_bib0095) 2002; 417 Macleod (10.1016/j.ijleo.2020.164811_bib0165) 2001 Raman (10.1016/j.ijleo.2020.164811_bib0060) 2014; 515 Family (10.1016/j.ijleo.2020.164811_bib0090) 2017; 38 Berdahl (10.1016/j.ijleo.2020.164811_bib0215) 1982; 29 Wang (10.1016/j.ijleo.2020.164811_bib0155) 2011; 19 Pardo (10.1016/j.ijleo.2020.164811_bib0175) 1988; 23 Taylor (10.1016/j.ijleo.2020.164811_bib0185) 2017; 197 Harrison (10.1016/j.ijleo.2020.164811_bib0015) 1978; 20 Wu (10.1016/j.ijleo.2020.164811_bib0115) 2012; 14 Nilsson (10.1016/j.ijleo.2020.164811_bib0050) 1995; 37 Bartoli (10.1016/j.ijleo.2020.164811_bib0010) 1977; 3 Bird (10.1016/j.ijleo.2020.164811_bib0210) 1983; 30 Benlattar (10.1016/j.ijleo.2020.164811_bib0045) 2005; 256 Greffet (10.1016/j.ijleo.2020.164811_bib0125) 2002; 416 Eriksson (10.1016/j.ijleo.2020.164811_bib0085) 1984; 11 Arpin (10.1016/j.ijleo.2020.164811_bib0150) 2011; 23 Palik (10.1016/j.ijleo.2020.164811_bib0180) 1985 Zeyghami (10.1016/j.ijleo.2020.164811_bib0080) 2018; 178 Catalanotti (10.1016/j.ijleo.2020.164811_bib0005) 1975; 17 Zhang (10.1016/j.ijleo.2020.164811_bib0160) 2011; 19 Rephaeli (10.1016/j.ijleo.2020.164811_bib0145) 2008; 92 Huang (10.1016/j.ijleo.2020.164811_bib0070) 2017; 104 |
| References_xml | – start-page: 87 year: 2010 end-page: 100 ident: bib0200 article-title: Thermal Radiation Heat Transfer – volume: 108 year: 2010 ident: bib0105 article-title: Performance analysis of thermopho- tovoltaic system with an equivalent cut-off blackbody emitter publication-title: J. Appl. Phys. – volume: 5 start-page: 596 year: 1950 end-page: 640 ident: bib0170 article-title: Investigations on the propagation of sinusoidal electromagnetic waves in stratified media applications to thin films publication-title: Ann. Phys. (Paris) – volume: 519 start-page: 5663 year: 2011 ident: bib0190 article-title: The effect of annealing on structural, electrical and optical properties of nanostructured ZnS/Ag/ZnS films publication-title: Thin Solid Films – volume: 50 start-page: 3201 year: 2011 end-page: 3204 ident: bib0220 article-title: Terahertz reflectivities of metal-coated mirrors publication-title: Appl. Opt. – volume: 11 start-page: 149 year: 1984 end-page: 161 ident: bib0085 article-title: Materials for radiative cooling to low temperature publication-title: Sol. Energy Mater. – volume: 198 start-page: 179 year: 2017 end-page: 186 ident: bib0055 article-title: Passive radiative cooling design with broadband optical thin-film filters publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 90 start-page: 187 year: 1982 end-page: 190 ident: bib0030 article-title: Radiativecooling to low temperatures with selectivity IR-emitting surfaces publication-title: Thin Solid Films – volume: 416 start-page: 61 year: 2002 end-page: 64 ident: bib0125 article-title: Coherent emission of light by thermal sources publication-title: Nature – volume: 55 start-page: 10105 year: 1997 ident: bib0120 article-title: Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton publication-title: Phys. Rev. B – volume: 38 start-page: 752 year: 2017 end-page: 759 ident: bib0075 article-title: Materials for radiative cooling: a review publication-title: Procedia Environ. Sci. – volume: 515 start-page: 540 year: 2014 end-page: 544 ident: bib0060 article-title: Passive radiative cooling below ambient air temperature under direct sunlight publication-title: Nature – volume: 38 start-page: 752 year: 2017 end-page: 759 ident: bib0090 article-title: Materials for radiative cooling. A review procedia environmental publication-title: Sciences (New York) – volume: 20 start-page: 185 year: 1978 end-page: 188 ident: bib0015 article-title: Radiative cooling of TiO2 white paint publication-title: Sol. Energy – volume: 37 start-page: 93 year: 1995 end-page: 118 ident: bib0050 article-title: Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils publication-title: Sol. Energy Mater. Sol. Cells – volume: 30 start-page: 563 year: 1983 end-page: 573 ident: bib0210 article-title: Terrestrial solar spectral data sets publication-title: Sol. Energy – volume: 1 start-page: 1334 year: 2009 end-page: 1338 ident: bib0040 article-title: Radiative cooling: lattice quantization and surface emissivity in thin coatings publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 626 year: 2017 end-page: 630 ident: bib0065 article-title: Daytime radiative cooling using near-black infrared emitters publication-title: ACS Photonics – volume: 178 start-page: 115 year: 2018 end-page: 128 ident: bib0080 article-title: A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling publication-title: Sol. Energy Mater. Sol. Cells – volume: 417 start-page: 52 year: 2002 end-page: 55 ident: bib0095 article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap publication-title: Nature – volume: 10 start-page: 373 year: 2010 end-page: 379 ident: bib0035 article-title: RadiativeHeat pumping from the earth using surface phonon resonant nanoparticles publication-title: Nano Lett. – volume: 14 year: 2012 ident: bib0115 article-title: Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems publication-title: J. Opt. – volume: 23 start-page: 1579 year: 1988 ident: bib0175 article-title: X-UV synthetic interference mirrors: theoretical approach publication-title: Agressologie – volume: 29 start-page: 299 year: 1982 ident: bib0215 article-title: The thermal radiance of clear skies publication-title: Sol Energy – volume: 17 start-page: 83 year: 1975 end-page: 89 ident: bib0005 article-title: The radiative cooling of selective surfaces publication-title: Sol. Energy – volume: 13 start-page: 1457 year: 2013 end-page: 1461 ident: bib0230 article-title: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling publication-title: Nano Lett. – volume: 52 start-page: 4205 year: 1981 end-page: 4220 ident: bib0025 article-title: Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films publication-title: J. Appl. Phys. – year: 1985 ident: bib0180 article-title: Handbook of Optical Constants of Solids – volume: 105 year: 2009 ident: bib0225 article-title: Alterning-infrared metamterial performance through metal resonance damping publication-title: J. Appl. Phys. – volume: 93 year: 2004 ident: bib0130 article-title: Thermal radiation from photonic crystals: a direct calculation publication-title: Phys. Rev. Lett. – volume: 19 start-page: 20642 year: 2011 end-page: 20649 ident: bib0155 article-title: Truncated spherical voids for nearly omnidirectional optical absorption publication-title: Opt. Express – volume: 14 start-page: 8785 year: 2006 end-page: 8796 ident: bib0135 article-title: Thermal emission and design in 2D-pe- riodic metallic photonic crystal slabs publication-title: Opt. Express – reference: Gemini observatory. IR Transmission Spectra. – reference: . – volume: 417 start-page: 52 year: 2002 end-page: 55 ident: bib0140 article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap publication-title: Nature – volume: 92 year: 2008 ident: bib0145 article-title: Tungsten black absorber for solar light with wide angular operation range publication-title: Appl. Phys. Lett. – volume: 3 start-page: 980 year: 2015 ident: bib0195 article-title: A metamaterial emitter for highly efficient radiative cooling publication-title: Adv. Opt. Mater. – volume: 19 start-page: 20462 year: 2011 end-page: 20467 ident: bib0160 article-title: Strong infrared absorber: surface-microstructered Au film replicated from back silicon publication-title: Opt. Express – volume: 3 start-page: 267 year: 1977 end-page: 286 ident: bib0010 article-title: Nocturnal and diurnal performances of selective radiators publication-title: Appl. Energy – volume: 36 start-page: 139 year: 1980 end-page: 141 ident: bib0020 article-title: Surfaces for radiative cooling: silicon monoxide films on aluminum publication-title: Appl. Phys. Lett. – volume: 18 start-page: A314 year: 2010 end-page: 34 ident: bib0100 article-title: and al. Design and global optimization of high-efficiency thermophotovoltaic systems publication-title: Opt. Express – start-page: 44 year: 2001 ident: bib0165 article-title: Thin-Film Optical Filters – volume: 104 start-page: 890 year: 2017 end-page: 896 ident: bib0070 article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling publication-title: Int. J. Heat Mass Transf. – volume: 23 start-page: 4783 year: 2011 end-page: 4788 ident: bib0150 article-title: Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability publication-title: Chem. Mater. – volume: 17 start-page: 15145 year: 2009 end-page: 15159 ident: bib0110 article-title: Absorber and emitter for solar thermo- photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit publication-title: Opt. Express – volume: 197 start-page: 76 year: 2017 end-page: 83 ident: bib0185 article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 256 start-page: 10 year: 2005 end-page: 15 ident: bib0045 article-title: Radiative properties of cadmium telluride thin film as radiative cooling materials publication-title: Opt. Commun. – volume: 20 start-page: 185 year: 1978 ident: 10.1016/j.ijleo.2020.164811_bib0015 article-title: Radiative cooling of TiO2 white paint publication-title: Sol. Energy doi: 10.1016/0038-092X(78)90195-0 – volume: 17 start-page: 83 year: 1975 ident: 10.1016/j.ijleo.2020.164811_bib0005 article-title: The radiative cooling of selective surfaces publication-title: Sol. Energy doi: 10.1016/0038-092X(75)90062-6 – volume: 18 start-page: A314 year: 2010 ident: 10.1016/j.ijleo.2020.164811_bib0100 article-title: and al. Design and global optimization of high-efficiency thermophotovoltaic systems publication-title: Opt. Express doi: 10.1364/OE.18.00A314 – volume: 197 start-page: 76 year: 2017 ident: 10.1016/j.ijleo.2020.164811_bib0185 article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2017.01.014 – volume: 93 year: 2004 ident: 10.1016/j.ijleo.2020.164811_bib0130 article-title: Thermal radiation from photonic crystals: a direct calculation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.213905 – volume: 256 start-page: 10 year: 2005 ident: 10.1016/j.ijleo.2020.164811_bib0045 article-title: Radiative properties of cadmium telluride thin film as radiative cooling materials publication-title: Opt. Commun. doi: 10.1016/j.optcom.2005.06.033 – volume: 14 start-page: 8785 year: 2006 ident: 10.1016/j.ijleo.2020.164811_bib0135 article-title: Thermal emission and design in 2D-pe- riodic metallic photonic crystal slabs publication-title: Opt. Express doi: 10.1364/OE.14.008785 – volume: 11 start-page: 149 year: 1984 ident: 10.1016/j.ijleo.2020.164811_bib0085 article-title: Materials for radiative cooling to low temperature publication-title: Sol. Energy Mater. doi: 10.1016/0165-1633(84)90067-4 – volume: 52 start-page: 4205 year: 1981 ident: 10.1016/j.ijleo.2020.164811_bib0025 article-title: Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films publication-title: J. Appl. Phys. doi: 10.1063/1.329270 – start-page: 87 year: 2010 ident: 10.1016/j.ijleo.2020.164811_bib0200 – volume: 1 start-page: 1334 year: 2009 ident: 10.1016/j.ijleo.2020.164811_bib0040 article-title: Radiative cooling: lattice quantization and surface emissivity in thin coatings publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900200r – volume: 198 start-page: 179 year: 2017 ident: 10.1016/j.ijleo.2020.164811_bib0055 article-title: Passive radiative cooling design with broadband optical thin-film filters publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2017.03.046 – volume: 417 start-page: 52 year: 2002 ident: 10.1016/j.ijleo.2020.164811_bib0140 article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap publication-title: Nature doi: 10.1038/417052a – volume: 50 start-page: 3201 year: 2011 ident: 10.1016/j.ijleo.2020.164811_bib0220 article-title: Terahertz reflectivities of metal-coated mirrors publication-title: Appl. Opt. doi: 10.1364/AO.50.003201 – volume: 90 start-page: 187 year: 1982 ident: 10.1016/j.ijleo.2020.164811_bib0030 article-title: Radiativecooling to low temperatures with selectivity IR-emitting surfaces publication-title: Thin Solid Films doi: 10.1016/0040-6090(82)90648-4 – volume: 3 start-page: 267 year: 1977 ident: 10.1016/j.ijleo.2020.164811_bib0010 article-title: Nocturnal and diurnal performances of selective radiators publication-title: Appl. Energy doi: 10.1016/0306-2619(77)90015-0 – volume: 10 start-page: 373 year: 2010 ident: 10.1016/j.ijleo.2020.164811_bib0035 article-title: RadiativeHeat pumping from the earth using surface phonon resonant nanoparticles publication-title: Nano Lett. doi: 10.1021/nl903271d – volume: 23 start-page: 4783 year: 2011 ident: 10.1016/j.ijleo.2020.164811_bib0150 article-title: Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability publication-title: Chem. Mater. doi: 10.1021/cm2019789 – volume: 19 start-page: 20462 year: 2011 ident: 10.1016/j.ijleo.2020.164811_bib0160 article-title: Strong infrared absorber: surface-microstructered Au film replicated from back silicon publication-title: Opt. Express doi: 10.1364/OE.19.020462 – year: 1985 ident: 10.1016/j.ijleo.2020.164811_bib0180 – volume: 519 start-page: 5663 year: 2011 ident: 10.1016/j.ijleo.2020.164811_bib0190 article-title: The effect of annealing on structural, electrical and optical properties of nanostructured ZnS/Ag/ZnS films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.03.023 – volume: 17 start-page: 15145 year: 2009 ident: 10.1016/j.ijleo.2020.164811_bib0110 article-title: Absorber and emitter for solar thermo- photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit publication-title: Opt. Express doi: 10.1364/OE.17.015145 – volume: 416 start-page: 61 year: 2002 ident: 10.1016/j.ijleo.2020.164811_bib0125 article-title: Coherent emission of light by thermal sources publication-title: Nature doi: 10.1038/416061a – volume: 13 start-page: 1457 issue: 4 year: 2013 ident: 10.1016/j.ijleo.2020.164811_bib0230 article-title: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling publication-title: Nano Lett. doi: 10.1021/nl4004283 – volume: 104 start-page: 890 year: 2017 ident: 10.1016/j.ijleo.2020.164811_bib0070 article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.009 – volume: 105 year: 2009 ident: 10.1016/j.ijleo.2020.164811_bib0225 article-title: Alterning-infrared metamterial performance through metal resonance damping publication-title: J. Appl. Phys. doi: 10.1063/1.3093698 – volume: 108 year: 2010 ident: 10.1016/j.ijleo.2020.164811_bib0105 article-title: Performance analysis of thermopho- tovoltaic system with an equivalent cut-off blackbody emitter publication-title: J. Appl. Phys. – volume: 92 year: 2008 ident: 10.1016/j.ijleo.2020.164811_bib0145 article-title: Tungsten black absorber for solar light with wide angular operation range publication-title: Appl. Phys. Lett. doi: 10.1063/1.2936997 – volume: 23 start-page: 1579 year: 1988 ident: 10.1016/j.ijleo.2020.164811_bib0175 article-title: X-UV synthetic interference mirrors: theoretical approach publication-title: Agressologie – volume: 37 start-page: 93 year: 1995 ident: 10.1016/j.ijleo.2020.164811_bib0050 article-title: Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(94)00200-2 – volume: 30 start-page: 563 year: 1983 ident: 10.1016/j.ijleo.2020.164811_bib0210 article-title: Terrestrial solar spectral data sets publication-title: Sol. Energy doi: 10.1016/0038-092X(83)90068-3 – volume: 36 start-page: 139 year: 1980 ident: 10.1016/j.ijleo.2020.164811_bib0020 article-title: Surfaces for radiative cooling: silicon monoxide films on aluminum publication-title: Appl. Phys. Lett. doi: 10.1063/1.91406 – volume: 4 start-page: 626 year: 2017 ident: 10.1016/j.ijleo.2020.164811_bib0065 article-title: Daytime radiative cooling using near-black infrared emitters publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00991 – volume: 3 start-page: 980 year: 2015 ident: 10.1016/j.ijleo.2020.164811_bib0195 article-title: A metamaterial emitter for highly efficient radiative cooling publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201570046 – volume: 38 start-page: 752 year: 2017 ident: 10.1016/j.ijleo.2020.164811_bib0075 article-title: Materials for radiative cooling: a review publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2017.03.158 – volume: 19 start-page: 20642 year: 2011 ident: 10.1016/j.ijleo.2020.164811_bib0155 article-title: Truncated spherical voids for nearly omnidirectional optical absorption publication-title: Opt. Express doi: 10.1364/OE.19.020642 – volume: 5 start-page: 596 year: 1950 ident: 10.1016/j.ijleo.2020.164811_bib0170 article-title: Investigations on the propagation of sinusoidal electromagnetic waves in stratified media applications to thin films publication-title: Ann. Phys. (Paris) – volume: 515 start-page: 540 year: 2014 ident: 10.1016/j.ijleo.2020.164811_bib0060 article-title: Passive radiative cooling below ambient air temperature under direct sunlight publication-title: Nature doi: 10.1038/nature13883 – start-page: 44 year: 2001 ident: 10.1016/j.ijleo.2020.164811_bib0165 – volume: 14 year: 2012 ident: 10.1016/j.ijleo.2020.164811_bib0115 article-title: Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems publication-title: J. Opt. doi: 10.1088/2040-8978/14/2/024005 – volume: 417 start-page: 52 year: 2002 ident: 10.1016/j.ijleo.2020.164811_bib0095 article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap publication-title: Nature doi: 10.1038/417052a – volume: 178 start-page: 115 year: 2018 ident: 10.1016/j.ijleo.2020.164811_bib0080 article-title: A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.01.015 – ident: 10.1016/j.ijleo.2020.164811_bib0205 – volume: 29 start-page: 299 year: 1982 ident: 10.1016/j.ijleo.2020.164811_bib0215 article-title: The thermal radiance of clear skies publication-title: Sol Energy doi: 10.1016/0038-092X(82)90245-6 – volume: 38 start-page: 752 year: 2017 ident: 10.1016/j.ijleo.2020.164811_bib0090 article-title: Materials for radiative cooling. A review procedia environmental publication-title: Sciences (New York) – volume: 55 start-page: 10105 year: 1997 ident: 10.1016/j.ijleo.2020.164811_bib0120 article-title: Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.10105 |
| SSID | ssj0007707 |
| Score | 2.2576413 |
| Snippet | Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 164811 |
| SubjectTerms | Emissivity Radiative cooling Reflectivity Ta2O5 |
| Title | Daytime radiative cooling purposes with selective multilayer design based on Ta2O5 |
| URI | https://dx.doi.org/10.1016/j.ijleo.2020.164811 |
| Volume | 214 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: AIEXJ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLagBYkLYhVlkw_cIKPGie34WEHZRFuJDmhukWPHaIZRUk0yqOXX87zEEyga0QOXKHIcJ_L79Pk9-y0IvShYWtQErBPKKp3kWuhEqlQkXGZEUZuPxCWe__qJHx8Xs5kYTnQ7V06AN01xfi7O_quooQ2EbUNnryDuOCg0wD0IHa4gdrj-k-DfyAtbMP7lymYdcI5Bqm190DlMatvVIaCtcxVw7HPnVLiUF65YeOcKdcLapu05wlSSEzpWYE-AYr5btfS0X_f9N2kjfuJewpGsgE3XDgTvJtHSr5ul7HvvyX0Um0-l1EA13ptgshni56pdz0ddw5YE2J-D-2qk2WzfGqZsTLMkzUdECVZa4Vn2Eof77YTFZL5YuvBMAm2x9-8Zs_9YyaJ_4eC6tijdIKUdpPSDXEe7hFMBBLh78OFw9jEu25z72Prh34cUVc4Z8NK__F2NGakm0zvodrAp8IHHwl10rW7uoZvOt1d199HngAgcEYEDIvCACGwRgSMi8AYR2CMCO0TgtsEOEQ_Ql7eH09fvk1BKI1Ggw_VJlpNcZkIWUjFm0opzm0kxF8Yei-ZCpXpfEpOmUhFDjaFVpTJGDSirtOCV0dlDtNO0Tf0IYaNpnWZU1RKoXFdMcCKpATKvGLXbB3uIDDNTqpBn3pY7WZZbpLKHXsWXznyale3d2TDlZdAUvQZYAoi2vfj4at95gm5t8P0U7fSrdf0M3VA_-nm3eh4Q9AtgE4fJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daytime+radiative+cooling+purposes+with+selective+multilayer+design+based+on+Ta2O5&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Mabchour%2C+G.&rft.au=Benlattar%2C+M.&rft.au=Saadouni%2C+K.&rft.au=Mazroui%2C+M.&rft.date=2020-07-01&rft.issn=0030-4026&rft.volume=214&rft.spage=164811&rft_id=info:doi/10.1016%2Fj.ijleo.2020.164811&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijleo_2020_164811 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon |