Daytime radiative cooling purposes with selective multilayer design based on Ta2O5

Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm. Historically, nighttime radiative cooling purposes have been investigated for a long time, but daytime radiative cooling has not been yet extensively...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optik (Stuttgart) Ročník 214; s. 164811
Hlavní autori: Mabchour, G., Benlattar, M., Saadouni, K., Mazroui, M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier GmbH 01.07.2020
Predmet:
ISSN:0030-4026, 1618-1336
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm. Historically, nighttime radiative cooling purposes have been investigated for a long time, but daytime radiative cooling has not been yet extensively studied. The daytime cooling operation requires a cover shield, which not only provides extremely high mid-infrared emissivity, but also rejects solar radiation. In this paper, we study numerically a multilayer structure that has both high emissivity in atmospheric window and high reflectivity in the visible and near infrared spectrums, which are difficult to achieve simultaneously. In this study, we propose alternative design for 2D thin film coatings, with periodic segments of Ta2O5 and SiO2. The selective optical properties of our design have been optimized in order to improve cooling performance. In this context the transfer matrix formalism was applied to determine the average optical properties. The multilayer conception can provide a high-performance cooling system exceeding 87 W/m2 at an ambient temperature of 300K under direct sunlight, giving to a temperature reduction of 20 °C. More than 95 % of the solar irradiation can be reflected, and the average emissivity in the sky window is larger than 85 %. We believe the proposed design is suitable for daytime radiative cooling purposes and temperature control applications.
AbstractList Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm. Historically, nighttime radiative cooling purposes have been investigated for a long time, but daytime radiative cooling has not been yet extensively studied. The daytime cooling operation requires a cover shield, which not only provides extremely high mid-infrared emissivity, but also rejects solar radiation. In this paper, we study numerically a multilayer structure that has both high emissivity in atmospheric window and high reflectivity in the visible and near infrared spectrums, which are difficult to achieve simultaneously. In this study, we propose alternative design for 2D thin film coatings, with periodic segments of Ta2O5 and SiO2. The selective optical properties of our design have been optimized in order to improve cooling performance. In this context the transfer matrix formalism was applied to determine the average optical properties. The multilayer conception can provide a high-performance cooling system exceeding 87 W/m2 at an ambient temperature of 300K under direct sunlight, giving to a temperature reduction of 20 °C. More than 95 % of the solar irradiation can be reflected, and the average emissivity in the sky window is larger than 85 %. We believe the proposed design is suitable for daytime radiative cooling purposes and temperature control applications.
ArticleNumber 164811
Author Mazroui, M.
Saadouni, K.
Mabchour, G.
Benlattar, M.
Author_xml – sequence: 1
  givenname: G.
  surname: Mabchour
  fullname: Mabchour, G.
  organization: Laboratoire d’Ingénierie des Procédés et Optimisation des Systèmes Industriels, Ecole Nationale des Sciences Appliquées Khouribga, Université Hassan 1er, 26000, Settat, Morocco
– sequence: 2
  givenname: M.
  surname: Benlattar
  fullname: Benlattar, M.
  email: benlattar1975@gmail.com
  organization: Condensed Matter Physics Laboratory, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca
– sequence: 3
  givenname: K.
  surname: Saadouni
  fullname: Saadouni, K.
  organization: Laboratoire d’Ingénierie des Procédés et Optimisation des Systèmes Industriels, Ecole Nationale des Sciences Appliquées Khouribga, Université Hassan 1er, 26000, Settat, Morocco
– sequence: 4
  givenname: M.
  surname: Mazroui
  fullname: Mazroui, M.
  organization: Condensed Matter Physics Laboratory, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca
BookMark eNqFkMtqwzAQRUVJoUnaL-hGP-BUI9myveiipE8IBEq6FrI8SmUcK0hOSv6-TtJVF-3qwlzOwD0TMup8h4TcApsBA3nXzFzTop9xxoeLTAuACzIGCUUCQsgRGTMmWJIyLq_IJMaGMZbnLB-T90d96N0GadC1073bIzXet65b0-0ubH3ESL9c_0kjtmhO_WbX9q7VBwy0xujWHa10xJr6jq40X2bX5NLqNuLNT07Jx_PTav6aLJYvb_OHRWI4FH0iUp5qUepCGyktVHmeARNpacuSQVoaqJnmFkAbbjNrs6oyQmZWlHlW5JWtxZSU578m-BgDWmVcP0zwXR-0axUwdZSjGnWSo45y1FnOwIpf7Da4jQ6Hf6j7M4XDrL3DoKJx2BmsXRjkqNq7P_lvZP-Bxg
CitedBy_id crossref_primary_10_1016_j_energy_2023_130073
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125303
crossref_primary_10_1016_j_applthermaleng_2021_116776
crossref_primary_10_1016_j_solmat_2021_111117
crossref_primary_10_1016_j_coco_2023_101717
crossref_primary_10_1515_nanoph_2025_0159
crossref_primary_10_1002_adom_202002226
crossref_primary_10_1016_j_solmat_2023_112587
crossref_primary_10_3390_atmos12091198
crossref_primary_10_1016_j_optcom_2020_126231
crossref_primary_10_1016_j_optcom_2021_127323
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125902
crossref_primary_10_1088_1361_6463_ac3701
crossref_primary_10_1016_j_nanoen_2025_111392
crossref_primary_10_1364_AO_413041
crossref_primary_10_1016_j_matpr_2023_11_018
crossref_primary_10_1002_er_7981
crossref_primary_10_1016_j_uclim_2022_101137
crossref_primary_10_1016_j_ijleo_2023_170711
crossref_primary_10_1016_j_optmat_2024_116037
crossref_primary_10_1016_j_mtcomm_2022_103530
crossref_primary_10_1016_j_nanoen_2020_105517
crossref_primary_10_1016_j_applthermaleng_2025_127431
crossref_primary_10_1364_AO_500775
crossref_primary_10_1016_j_matpr_2022_06_027
crossref_primary_10_1364_AO_403373
Cites_doi 10.1016/0038-092X(78)90195-0
10.1016/0038-092X(75)90062-6
10.1364/OE.18.00A314
10.1016/j.jqsrt.2017.01.014
10.1103/PhysRevLett.93.213905
10.1016/j.optcom.2005.06.033
10.1364/OE.14.008785
10.1016/0165-1633(84)90067-4
10.1063/1.329270
10.1021/am900200r
10.1016/j.jqsrt.2017.03.046
10.1038/417052a
10.1364/AO.50.003201
10.1016/0040-6090(82)90648-4
10.1016/0306-2619(77)90015-0
10.1021/nl903271d
10.1021/cm2019789
10.1364/OE.19.020462
10.1016/j.tsf.2011.03.023
10.1364/OE.17.015145
10.1038/416061a
10.1021/nl4004283
10.1016/j.ijheatmasstransfer.2016.08.009
10.1063/1.3093698
10.1063/1.2936997
10.1016/0927-0248(94)00200-2
10.1016/0038-092X(83)90068-3
10.1063/1.91406
10.1021/acsphotonics.6b00991
10.1002/adom.201570046
10.1016/j.proenv.2017.03.158
10.1364/OE.19.020642
10.1038/nature13883
10.1088/2040-8978/14/2/024005
10.1016/j.solmat.2018.01.015
10.1016/0038-092X(82)90245-6
10.1103/PhysRevB.55.10105
ContentType Journal Article
Copyright 2020 Elsevier GmbH
Copyright_xml – notice: 2020 Elsevier GmbH
DBID AAYXX
CITATION
DOI 10.1016/j.ijleo.2020.164811
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1618-1336
ExternalDocumentID 10_1016_j_ijleo_2020_164811
S0030402620306471
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
TN5
VOH
XOL
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c218t-3424a39a8ac66f1b77510349f990149c1d0a2f11ac2f5ff5bbc365f397587bfd3
ISSN 0030-4026
IngestDate Sat Nov 29 07:26:40 EST 2025
Tue Nov 18 22:36:05 EST 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reflectivity
Emissivity
Radiative cooling
Ta2O5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c218t-3424a39a8ac66f1b77510349f990149c1d0a2f11ac2f5ff5bbc365f397587bfd3
ParticipantIDs crossref_citationtrail_10_1016_j_ijleo_2020_164811
crossref_primary_10_1016_j_ijleo_2020_164811
elsevier_sciencedirect_doi_10_1016_j_ijleo_2020_164811
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationTitle Optik (Stuttgart)
PublicationYear 2020
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Gentle, Smith (bib0035) 2010; 10
Eden, Aaswath, Shanhui (bib0230) 2013; 13
Zeyghami, Yogi Goswami, Stefanakos (bib0080) 2018; 178
Neghabi, Behjat, Ghorashi, Salehi (bib0190) 2011; 519
Kou, Jurado, Chen, Fan, Minnich (bib0065) 2017; 4
Pardo, Megademini, André (bib0175) 1988; 23
Bermel, Ghebrebrhan, Chan, Yeng, Araghchini, Hamam (bib0100) 2010; 18
Wu, Neuner, John, Milder, Zollars, Savoy (bib0115) 2012; 14
Greffet, Carminati, Joulain, Mulet, Mainguy, Chen (bib0125) 2002; 416
Luo, Narayanaswamy, Chen, Joannopoulos (bib0130) 2004; 93
Naftaly, Dudley (bib0220) 2011; 50
Catalanotti, Cuomo, Piro, Ruggi, Silvestrini, Troise (bib0005) 1975; 17
Berdahl, Fromberg (bib0215) 1982; 29
Arpin, Losego, Braun (bib0150) 2011; 23
Bird, Hulstrom, Lewis (bib0210) 1983; 30
Harrison, R.Walton (bib0015) 1978; 20
Family, Pinar Mengüç (bib0090) 2017; 38
Granqvist, Hjortsberg, Eriksson (bib0030) 1982; 90
Benlattar, Oualim, Harmouchi, Mouhsen, Belafhal (bib0045) 2005; 256
Wang, Hu, Pu, Huang, Zhao, Feng (bib0155) 2011; 19
Hossain (bib0195) 2015; 3
Fleming, Lin, El-Kady, Biswas, Ho (bib0095) 2002; 417
Rephaeli, Fan (bib0145) 2008; 92
Zhang, Li, Feng, Zhu, Xiao, Zhou (bib0160) 2011; 19
Nilsson, Niklasson (bib0050) 1995; 37
Fleming, Lin, El-Kady, Biswas (bib0140) 2002; 417
Suryawanshi, Lin (bib0040) 2009; 1
Kecebas, Menguc, Kosar, Sendur (bib0055) 2017; 198
.
Eriksson, Lushiku, Granqvist (bib0085) 1984; 11
Xiaofeng, Jianjun, Huafeng, Sihai (bib0105) 2010; 108
Chan, Solj ˇacíc, Joannopoulos (bib0135) 2006; 14
Abelès (bib0170) 1950; 5
Howell, Mengüç, Siegel (bib0200) 2010
Granqvist, Hjortsberg (bib0020) 1980; 36
Huang, Ruan (bib0070) 2017; 104
Rephaeli, Fan (bib0110) 2009; 17
Gall, Olivier, Greffet (bib0120) 1997; 55
Palik (bib0180) 1985
Macleod (bib0165) 2001
Gemini observatory. IR Transmission Spectra.
Ginn, Shelton, Krenz, Lail, Boreman (bib0225) 2009; 105
Taylor, Yang, Wang (bib0185) 2017; 197
Family, Menguc (bib0075) 2017; 38
Granqvist, Hjortsberg (bib0025) 1981; 52
Bartoli, Catalanotti, Coluzzi, Cuomo, Silvestrini, Troise (bib0010) 1977; 3
Raman, Anoma, Zhu, Rephaeli, Fan (bib0060) 2014; 515
Howell (10.1016/j.ijleo.2020.164811_bib0200) 2010
Gentle (10.1016/j.ijleo.2020.164811_bib0035) 2010; 10
Bermel (10.1016/j.ijleo.2020.164811_bib0100) 2010; 18
Eden (10.1016/j.ijleo.2020.164811_bib0230) 2013; 13
Kecebas (10.1016/j.ijleo.2020.164811_bib0055) 2017; 198
Luo (10.1016/j.ijleo.2020.164811_bib0130) 2004; 93
Gall (10.1016/j.ijleo.2020.164811_bib0120) 1997; 55
Abelès (10.1016/j.ijleo.2020.164811_bib0170) 1950; 5
Granqvist (10.1016/j.ijleo.2020.164811_bib0025) 1981; 52
Fleming (10.1016/j.ijleo.2020.164811_bib0140) 2002; 417
Chan (10.1016/j.ijleo.2020.164811_bib0135) 2006; 14
Granqvist (10.1016/j.ijleo.2020.164811_bib0030) 1982; 90
Xiaofeng (10.1016/j.ijleo.2020.164811_bib0105) 2010; 108
Rephaeli (10.1016/j.ijleo.2020.164811_bib0110) 2009; 17
Naftaly (10.1016/j.ijleo.2020.164811_bib0220) 2011; 50
Granqvist (10.1016/j.ijleo.2020.164811_bib0020) 1980; 36
Kou (10.1016/j.ijleo.2020.164811_bib0065) 2017; 4
Family (10.1016/j.ijleo.2020.164811_bib0075) 2017; 38
10.1016/j.ijleo.2020.164811_bib0205
Suryawanshi (10.1016/j.ijleo.2020.164811_bib0040) 2009; 1
Hossain (10.1016/j.ijleo.2020.164811_bib0195) 2015; 3
Ginn (10.1016/j.ijleo.2020.164811_bib0225) 2009; 105
Neghabi (10.1016/j.ijleo.2020.164811_bib0190) 2011; 519
Fleming (10.1016/j.ijleo.2020.164811_bib0095) 2002; 417
Macleod (10.1016/j.ijleo.2020.164811_bib0165) 2001
Raman (10.1016/j.ijleo.2020.164811_bib0060) 2014; 515
Family (10.1016/j.ijleo.2020.164811_bib0090) 2017; 38
Berdahl (10.1016/j.ijleo.2020.164811_bib0215) 1982; 29
Wang (10.1016/j.ijleo.2020.164811_bib0155) 2011; 19
Pardo (10.1016/j.ijleo.2020.164811_bib0175) 1988; 23
Taylor (10.1016/j.ijleo.2020.164811_bib0185) 2017; 197
Harrison (10.1016/j.ijleo.2020.164811_bib0015) 1978; 20
Wu (10.1016/j.ijleo.2020.164811_bib0115) 2012; 14
Nilsson (10.1016/j.ijleo.2020.164811_bib0050) 1995; 37
Bartoli (10.1016/j.ijleo.2020.164811_bib0010) 1977; 3
Bird (10.1016/j.ijleo.2020.164811_bib0210) 1983; 30
Benlattar (10.1016/j.ijleo.2020.164811_bib0045) 2005; 256
Greffet (10.1016/j.ijleo.2020.164811_bib0125) 2002; 416
Eriksson (10.1016/j.ijleo.2020.164811_bib0085) 1984; 11
Arpin (10.1016/j.ijleo.2020.164811_bib0150) 2011; 23
Palik (10.1016/j.ijleo.2020.164811_bib0180) 1985
Zeyghami (10.1016/j.ijleo.2020.164811_bib0080) 2018; 178
Catalanotti (10.1016/j.ijleo.2020.164811_bib0005) 1975; 17
Zhang (10.1016/j.ijleo.2020.164811_bib0160) 2011; 19
Rephaeli (10.1016/j.ijleo.2020.164811_bib0145) 2008; 92
Huang (10.1016/j.ijleo.2020.164811_bib0070) 2017; 104
References_xml – start-page: 87
  year: 2010
  end-page: 100
  ident: bib0200
  article-title: Thermal Radiation Heat Transfer
– volume: 108
  year: 2010
  ident: bib0105
  article-title: Performance analysis of thermopho- tovoltaic system with an equivalent cut-off blackbody emitter
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 596
  year: 1950
  end-page: 640
  ident: bib0170
  article-title: Investigations on the propagation of sinusoidal electromagnetic waves in stratified media applications to thin films
  publication-title: Ann. Phys. (Paris)
– volume: 519
  start-page: 5663
  year: 2011
  ident: bib0190
  article-title: The effect of annealing on structural, electrical and optical properties of nanostructured ZnS/Ag/ZnS films
  publication-title: Thin Solid Films
– volume: 50
  start-page: 3201
  year: 2011
  end-page: 3204
  ident: bib0220
  article-title: Terahertz reflectivities of metal-coated mirrors
  publication-title: Appl. Opt.
– volume: 11
  start-page: 149
  year: 1984
  end-page: 161
  ident: bib0085
  article-title: Materials for radiative cooling to low temperature
  publication-title: Sol. Energy Mater.
– volume: 198
  start-page: 179
  year: 2017
  end-page: 186
  ident: bib0055
  article-title: Passive radiative cooling design with broadband optical thin-film filters
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 90
  start-page: 187
  year: 1982
  end-page: 190
  ident: bib0030
  article-title: Radiativecooling to low temperatures with selectivity IR-emitting surfaces
  publication-title: Thin Solid Films
– volume: 416
  start-page: 61
  year: 2002
  end-page: 64
  ident: bib0125
  article-title: Coherent emission of light by thermal sources
  publication-title: Nature
– volume: 55
  start-page: 10105
  year: 1997
  ident: bib0120
  article-title: Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton
  publication-title: Phys. Rev. B
– volume: 38
  start-page: 752
  year: 2017
  end-page: 759
  ident: bib0075
  article-title: Materials for radiative cooling: a review
  publication-title: Procedia Environ. Sci.
– volume: 515
  start-page: 540
  year: 2014
  end-page: 544
  ident: bib0060
  article-title: Passive radiative cooling below ambient air temperature under direct sunlight
  publication-title: Nature
– volume: 38
  start-page: 752
  year: 2017
  end-page: 759
  ident: bib0090
  article-title: Materials for radiative cooling. A review procedia environmental
  publication-title: Sciences (New York)
– volume: 20
  start-page: 185
  year: 1978
  end-page: 188
  ident: bib0015
  article-title: Radiative cooling of TiO2 white paint
  publication-title: Sol. Energy
– volume: 37
  start-page: 93
  year: 1995
  end-page: 118
  ident: bib0050
  article-title: Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 30
  start-page: 563
  year: 1983
  end-page: 573
  ident: bib0210
  article-title: Terrestrial solar spectral data sets
  publication-title: Sol. Energy
– volume: 1
  start-page: 1334
  year: 2009
  end-page: 1338
  ident: bib0040
  article-title: Radiative cooling: lattice quantization and surface emissivity in thin coatings
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 626
  year: 2017
  end-page: 630
  ident: bib0065
  article-title: Daytime radiative cooling using near-black infrared emitters
  publication-title: ACS Photonics
– volume: 178
  start-page: 115
  year: 2018
  end-page: 128
  ident: bib0080
  article-title: A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 417
  start-page: 52
  year: 2002
  end-page: 55
  ident: bib0095
  article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap
  publication-title: Nature
– volume: 10
  start-page: 373
  year: 2010
  end-page: 379
  ident: bib0035
  article-title: RadiativeHeat pumping from the earth using surface phonon resonant nanoparticles
  publication-title: Nano Lett.
– volume: 14
  year: 2012
  ident: bib0115
  article-title: Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems
  publication-title: J. Opt.
– volume: 23
  start-page: 1579
  year: 1988
  ident: bib0175
  article-title: X-UV synthetic interference mirrors: theoretical approach
  publication-title: Agressologie
– volume: 29
  start-page: 299
  year: 1982
  ident: bib0215
  article-title: The thermal radiance of clear skies
  publication-title: Sol Energy
– volume: 17
  start-page: 83
  year: 1975
  end-page: 89
  ident: bib0005
  article-title: The radiative cooling of selective surfaces
  publication-title: Sol. Energy
– volume: 13
  start-page: 1457
  year: 2013
  end-page: 1461
  ident: bib0230
  article-title: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling
  publication-title: Nano Lett.
– volume: 52
  start-page: 4205
  year: 1981
  end-page: 4220
  ident: bib0025
  article-title: Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films
  publication-title: J. Appl. Phys.
– year: 1985
  ident: bib0180
  article-title: Handbook of Optical Constants of Solids
– volume: 105
  year: 2009
  ident: bib0225
  article-title: Alterning-infrared metamterial performance through metal resonance damping
  publication-title: J. Appl. Phys.
– volume: 93
  year: 2004
  ident: bib0130
  article-title: Thermal radiation from photonic crystals: a direct calculation
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 20642
  year: 2011
  end-page: 20649
  ident: bib0155
  article-title: Truncated spherical voids for nearly omnidirectional optical absorption
  publication-title: Opt. Express
– volume: 14
  start-page: 8785
  year: 2006
  end-page: 8796
  ident: bib0135
  article-title: Thermal emission and design in 2D-pe- riodic metallic photonic crystal slabs
  publication-title: Opt. Express
– reference: Gemini observatory. IR Transmission Spectra.
– reference: .
– volume: 417
  start-page: 52
  year: 2002
  end-page: 55
  ident: bib0140
  article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap
  publication-title: Nature
– volume: 92
  year: 2008
  ident: bib0145
  article-title: Tungsten black absorber for solar light with wide angular operation range
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 980
  year: 2015
  ident: bib0195
  article-title: A metamaterial emitter for highly efficient radiative cooling
  publication-title: Adv. Opt. Mater.
– volume: 19
  start-page: 20462
  year: 2011
  end-page: 20467
  ident: bib0160
  article-title: Strong infrared absorber: surface-microstructered Au film replicated from back silicon
  publication-title: Opt. Express
– volume: 3
  start-page: 267
  year: 1977
  end-page: 286
  ident: bib0010
  article-title: Nocturnal and diurnal performances of selective radiators
  publication-title: Appl. Energy
– volume: 36
  start-page: 139
  year: 1980
  end-page: 141
  ident: bib0020
  article-title: Surfaces for radiative cooling: silicon monoxide films on aluminum
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: A314
  year: 2010
  end-page: 34
  ident: bib0100
  article-title: and al. Design and global optimization of high-efficiency thermophotovoltaic systems
  publication-title: Opt. Express
– start-page: 44
  year: 2001
  ident: bib0165
  article-title: Thin-Film Optical Filters
– volume: 104
  start-page: 890
  year: 2017
  end-page: 896
  ident: bib0070
  article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 23
  start-page: 4783
  year: 2011
  end-page: 4788
  ident: bib0150
  article-title: Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability
  publication-title: Chem. Mater.
– volume: 17
  start-page: 15145
  year: 2009
  end-page: 15159
  ident: bib0110
  article-title: Absorber and emitter for solar thermo- photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit
  publication-title: Opt. Express
– volume: 197
  start-page: 76
  year: 2017
  end-page: 83
  ident: bib0185
  article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 256
  start-page: 10
  year: 2005
  end-page: 15
  ident: bib0045
  article-title: Radiative properties of cadmium telluride thin film as radiative cooling materials
  publication-title: Opt. Commun.
– volume: 20
  start-page: 185
  year: 1978
  ident: 10.1016/j.ijleo.2020.164811_bib0015
  article-title: Radiative cooling of TiO2 white paint
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(78)90195-0
– volume: 17
  start-page: 83
  year: 1975
  ident: 10.1016/j.ijleo.2020.164811_bib0005
  article-title: The radiative cooling of selective surfaces
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(75)90062-6
– volume: 18
  start-page: A314
  year: 2010
  ident: 10.1016/j.ijleo.2020.164811_bib0100
  article-title: and al. Design and global optimization of high-efficiency thermophotovoltaic systems
  publication-title: Opt. Express
  doi: 10.1364/OE.18.00A314
– volume: 197
  start-page: 76
  year: 2017
  ident: 10.1016/j.ijleo.2020.164811_bib0185
  article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2017.01.014
– volume: 93
  year: 2004
  ident: 10.1016/j.ijleo.2020.164811_bib0130
  article-title: Thermal radiation from photonic crystals: a direct calculation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.213905
– volume: 256
  start-page: 10
  year: 2005
  ident: 10.1016/j.ijleo.2020.164811_bib0045
  article-title: Radiative properties of cadmium telluride thin film as radiative cooling materials
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2005.06.033
– volume: 14
  start-page: 8785
  year: 2006
  ident: 10.1016/j.ijleo.2020.164811_bib0135
  article-title: Thermal emission and design in 2D-pe- riodic metallic photonic crystal slabs
  publication-title: Opt. Express
  doi: 10.1364/OE.14.008785
– volume: 11
  start-page: 149
  year: 1984
  ident: 10.1016/j.ijleo.2020.164811_bib0085
  article-title: Materials for radiative cooling to low temperature
  publication-title: Sol. Energy Mater.
  doi: 10.1016/0165-1633(84)90067-4
– volume: 52
  start-page: 4205
  year: 1981
  ident: 10.1016/j.ijleo.2020.164811_bib0025
  article-title: Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329270
– start-page: 87
  year: 2010
  ident: 10.1016/j.ijleo.2020.164811_bib0200
– volume: 1
  start-page: 1334
  year: 2009
  ident: 10.1016/j.ijleo.2020.164811_bib0040
  article-title: Radiative cooling: lattice quantization and surface emissivity in thin coatings
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900200r
– volume: 198
  start-page: 179
  year: 2017
  ident: 10.1016/j.ijleo.2020.164811_bib0055
  article-title: Passive radiative cooling design with broadband optical thin-film filters
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2017.03.046
– volume: 417
  start-page: 52
  year: 2002
  ident: 10.1016/j.ijleo.2020.164811_bib0140
  article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap
  publication-title: Nature
  doi: 10.1038/417052a
– volume: 50
  start-page: 3201
  year: 2011
  ident: 10.1016/j.ijleo.2020.164811_bib0220
  article-title: Terahertz reflectivities of metal-coated mirrors
  publication-title: Appl. Opt.
  doi: 10.1364/AO.50.003201
– volume: 90
  start-page: 187
  year: 1982
  ident: 10.1016/j.ijleo.2020.164811_bib0030
  article-title: Radiativecooling to low temperatures with selectivity IR-emitting surfaces
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(82)90648-4
– volume: 3
  start-page: 267
  year: 1977
  ident: 10.1016/j.ijleo.2020.164811_bib0010
  article-title: Nocturnal and diurnal performances of selective radiators
  publication-title: Appl. Energy
  doi: 10.1016/0306-2619(77)90015-0
– volume: 10
  start-page: 373
  year: 2010
  ident: 10.1016/j.ijleo.2020.164811_bib0035
  article-title: RadiativeHeat pumping from the earth using surface phonon resonant nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl903271d
– volume: 23
  start-page: 4783
  year: 2011
  ident: 10.1016/j.ijleo.2020.164811_bib0150
  article-title: Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability
  publication-title: Chem. Mater.
  doi: 10.1021/cm2019789
– volume: 19
  start-page: 20462
  year: 2011
  ident: 10.1016/j.ijleo.2020.164811_bib0160
  article-title: Strong infrared absorber: surface-microstructered Au film replicated from back silicon
  publication-title: Opt. Express
  doi: 10.1364/OE.19.020462
– year: 1985
  ident: 10.1016/j.ijleo.2020.164811_bib0180
– volume: 519
  start-page: 5663
  year: 2011
  ident: 10.1016/j.ijleo.2020.164811_bib0190
  article-title: The effect of annealing on structural, electrical and optical properties of nanostructured ZnS/Ag/ZnS films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.03.023
– volume: 17
  start-page: 15145
  year: 2009
  ident: 10.1016/j.ijleo.2020.164811_bib0110
  article-title: Absorber and emitter for solar thermo- photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit
  publication-title: Opt. Express
  doi: 10.1364/OE.17.015145
– volume: 416
  start-page: 61
  year: 2002
  ident: 10.1016/j.ijleo.2020.164811_bib0125
  article-title: Coherent emission of light by thermal sources
  publication-title: Nature
  doi: 10.1038/416061a
– volume: 13
  start-page: 1457
  issue: 4
  year: 2013
  ident: 10.1016/j.ijleo.2020.164811_bib0230
  article-title: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling
  publication-title: Nano Lett.
  doi: 10.1021/nl4004283
– volume: 104
  start-page: 890
  year: 2017
  ident: 10.1016/j.ijleo.2020.164811_bib0070
  article-title: Nanoparticle embedded double-layer coating for daytime radiative cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.009
– volume: 105
  year: 2009
  ident: 10.1016/j.ijleo.2020.164811_bib0225
  article-title: Alterning-infrared metamterial performance through metal resonance damping
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3093698
– volume: 108
  year: 2010
  ident: 10.1016/j.ijleo.2020.164811_bib0105
  article-title: Performance analysis of thermopho- tovoltaic system with an equivalent cut-off blackbody emitter
  publication-title: J. Appl. Phys.
– volume: 92
  year: 2008
  ident: 10.1016/j.ijleo.2020.164811_bib0145
  article-title: Tungsten black absorber for solar light with wide angular operation range
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2936997
– volume: 23
  start-page: 1579
  year: 1988
  ident: 10.1016/j.ijleo.2020.164811_bib0175
  article-title: X-UV synthetic interference mirrors: theoretical approach
  publication-title: Agressologie
– volume: 37
  start-page: 93
  year: 1995
  ident: 10.1016/j.ijleo.2020.164811_bib0050
  article-title: Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(94)00200-2
– volume: 30
  start-page: 563
  year: 1983
  ident: 10.1016/j.ijleo.2020.164811_bib0210
  article-title: Terrestrial solar spectral data sets
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(83)90068-3
– volume: 36
  start-page: 139
  year: 1980
  ident: 10.1016/j.ijleo.2020.164811_bib0020
  article-title: Surfaces for radiative cooling: silicon monoxide films on aluminum
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.91406
– volume: 4
  start-page: 626
  year: 2017
  ident: 10.1016/j.ijleo.2020.164811_bib0065
  article-title: Daytime radiative cooling using near-black infrared emitters
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00991
– volume: 3
  start-page: 980
  year: 2015
  ident: 10.1016/j.ijleo.2020.164811_bib0195
  article-title: A metamaterial emitter for highly efficient radiative cooling
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201570046
– volume: 38
  start-page: 752
  year: 2017
  ident: 10.1016/j.ijleo.2020.164811_bib0075
  article-title: Materials for radiative cooling: a review
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2017.03.158
– volume: 19
  start-page: 20642
  year: 2011
  ident: 10.1016/j.ijleo.2020.164811_bib0155
  article-title: Truncated spherical voids for nearly omnidirectional optical absorption
  publication-title: Opt. Express
  doi: 10.1364/OE.19.020642
– volume: 5
  start-page: 596
  year: 1950
  ident: 10.1016/j.ijleo.2020.164811_bib0170
  article-title: Investigations on the propagation of sinusoidal electromagnetic waves in stratified media applications to thin films
  publication-title: Ann. Phys. (Paris)
– volume: 515
  start-page: 540
  year: 2014
  ident: 10.1016/j.ijleo.2020.164811_bib0060
  article-title: Passive radiative cooling below ambient air temperature under direct sunlight
  publication-title: Nature
  doi: 10.1038/nature13883
– start-page: 44
  year: 2001
  ident: 10.1016/j.ijleo.2020.164811_bib0165
– volume: 14
  year: 2012
  ident: 10.1016/j.ijleo.2020.164811_bib0115
  article-title: Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/14/2/024005
– volume: 417
  start-page: 52
  year: 2002
  ident: 10.1016/j.ijleo.2020.164811_bib0095
  article-title: All-metallic three-dimensional photonic crystals with a large infrared bandgap
  publication-title: Nature
  doi: 10.1038/417052a
– volume: 178
  start-page: 115
  year: 2018
  ident: 10.1016/j.ijleo.2020.164811_bib0080
  article-title: A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.01.015
– ident: 10.1016/j.ijleo.2020.164811_bib0205
– volume: 29
  start-page: 299
  year: 1982
  ident: 10.1016/j.ijleo.2020.164811_bib0215
  article-title: The thermal radiance of clear skies
  publication-title: Sol Energy
  doi: 10.1016/0038-092X(82)90245-6
– volume: 38
  start-page: 752
  year: 2017
  ident: 10.1016/j.ijleo.2020.164811_bib0090
  article-title: Materials for radiative cooling. A review procedia environmental
  publication-title: Sciences (New York)
– volume: 55
  start-page: 10105
  year: 1997
  ident: 10.1016/j.ijleo.2020.164811_bib0120
  article-title: Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.10105
SSID ssj0007707
Score 2.2576413
Snippet Nighttime radiative cooling is the natural phenomenon by which the radiators lose heat via thermal radiation using the transparency window (8–13) μm....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 164811
SubjectTerms Emissivity
Radiative cooling
Reflectivity
Ta2O5
Title Daytime radiative cooling purposes with selective multilayer design based on Ta2O5
URI https://dx.doi.org/10.1016/j.ijleo.2020.164811
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLagBYkLYhVlkw_cIKPGie34WEHZRFuJDmhukWPHaIZRUk0yqOXX87zEEyga0QOXKHIcJ_L79Pk9-y0IvShYWtQErBPKKp3kWuhEqlQkXGZEUZuPxCWe__qJHx8Xs5kYTnQ7V06AN01xfi7O_quooQ2EbUNnryDuOCg0wD0IHa4gdrj-k-DfyAtbMP7lymYdcI5Bqm190DlMatvVIaCtcxVw7HPnVLiUF65YeOcKdcLapu05wlSSEzpWYE-AYr5btfS0X_f9N2kjfuJewpGsgE3XDgTvJtHSr5ul7HvvyX0Um0-l1EA13ptgshni56pdz0ddw5YE2J-D-2qk2WzfGqZsTLMkzUdECVZa4Vn2Eof77YTFZL5YuvBMAm2x9-8Zs_9YyaJ_4eC6tijdIKUdpPSDXEe7hFMBBLh78OFw9jEu25z72Prh34cUVc4Z8NK__F2NGakm0zvodrAp8IHHwl10rW7uoZvOt1d199HngAgcEYEDIvCACGwRgSMi8AYR2CMCO0TgtsEOEQ_Ql7eH09fvk1BKI1Ggw_VJlpNcZkIWUjFm0opzm0kxF8Yei-ZCpXpfEpOmUhFDjaFVpTJGDSirtOCV0dlDtNO0Tf0IYaNpnWZU1RKoXFdMcCKpATKvGLXbB3uIDDNTqpBn3pY7WZZbpLKHXsWXznyale3d2TDlZdAUvQZYAoi2vfj4at95gm5t8P0U7fSrdf0M3VA_-nm3eh4Q9AtgE4fJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daytime+radiative+cooling+purposes+with+selective+multilayer+design+based+on+Ta2O5&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Mabchour%2C+G.&rft.au=Benlattar%2C+M.&rft.au=Saadouni%2C+K.&rft.au=Mazroui%2C+M.&rft.date=2020-07-01&rft.issn=0030-4026&rft.volume=214&rft.spage=164811&rft_id=info:doi/10.1016%2Fj.ijleo.2020.164811&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijleo_2020_164811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon