Unsupervised Graph Representation Learning Beyond Aggregated View
Unsupervised graph representation learning aims to condense graph information into dense vector embeddings to support various downstream tasks. To achieve this goal, existing UGRL approaches mainly adopt the message-passing mechanism to simultaneously incorporate graph topology and node attribute wi...
Uloženo v:
| Vydáno v: | IEEE transactions on knowledge and data engineering Ročník 36; číslo 12; s. 9504 - 9516 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2024
|
| Témata: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!