Context-Aware Attention Encoder-Decoder Network for Connected Heavy-Duty Vehicle Aggressive Driving Identification Under Naturalistic Driving Conditions

Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily focused on the driving behavior of light-duty vehicles based on analysis methods using simulation or questionnaire data, while heavy-duty vehi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 25; číslo 8; s. 9710 - 9722
Hlavní autoři: Tang, Kun, Yang, Li, Ma, Yongfeng, Guo, Tangyi, He, Fang
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.08.2024
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily focused on the driving behavior of light-duty vehicles based on analysis methods using simulation or questionnaire data, while heavy-duty vehicles, which bear significant responsibility for fatal accidents, are seldom investigated. This study develops a context-aware attention encoder-decoder deep framework for aggressive driving identification, utilizing real massive multi-source heterogeneous data collected under naturalistic driving conditions. The proposed framework incorporates vehicle-related, driving-related, weather-related and environment-related data. Through the BiLSTM based encoder-decoder deep architecture, high-level representations of driving behavior are learned from driving signals layer by layer, and temporal dependencies are captured from both forward and backward directions. By learning context-aware personalized latent semantic vectors at different time step, the model is capable of adaptively focusing on the important information for prediction. To our knowledge, the aggressive driving of heavy-duty vehicles under connected and naturalistic driving conditions has been rarely explored. This study contributes to the current understanding in this field. The proposed framework is evaluated based on the multi-source heterogeneous driving behavior data generated from over 13000 vehicles in a connected environment under naturalistic driving conditions. Empirical results from extensive experiments validate that the proposed model outperforms competing models, providing a promising approach with high effectiveness and robustness for aggressive driving behavior identification.
AbstractList Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily focused on the driving behavior of light-duty vehicles based on analysis methods using simulation or questionnaire data, while heavy-duty vehicles, which bear significant responsibility for fatal accidents, are seldom investigated. This study develops a context-aware attention encoder-decoder deep framework for aggressive driving identification, utilizing real massive multi-source heterogeneous data collected under naturalistic driving conditions. The proposed framework incorporates vehicle-related, driving-related, weather-related and environment-related data. Through the BiLSTM based encoder-decoder deep architecture, high-level representations of driving behavior are learned from driving signals layer by layer, and temporal dependencies are captured from both forward and backward directions. By learning context-aware personalized latent semantic vectors at different time step, the model is capable of adaptively focusing on the important information for prediction. To our knowledge, the aggressive driving of heavy-duty vehicles under connected and naturalistic driving conditions has been rarely explored. This study contributes to the current understanding in this field. The proposed framework is evaluated based on the multi-source heterogeneous driving behavior data generated from over 13000 vehicles in a connected environment under naturalistic driving conditions. Empirical results from extensive experiments validate that the proposed model outperforms competing models, providing a promising approach with high effectiveness and robustness for aggressive driving behavior identification.
Author Tang, Kun
Yang, Li
Guo, Tangyi
He, Fang
Ma, Yongfeng
Author_xml – sequence: 1
  givenname: Kun
  orcidid: 0000-0001-9976-9845
  surname: Tang
  fullname: Tang, Kun
  email: tangkun@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0002-8152-7642
  surname: Yang
  fullname: Yang, Li
  email: yangli945@126.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Yongfeng
  orcidid: 0000-0002-6184-5379
  surname: Ma
  fullname: Ma, Yongfeng
  email: mayf@seu.edu.cn
  organization: School of Transportation, Southeast University, Nanjing, China
– sequence: 4
  givenname: Tangyi
  surname: Guo
  fullname: Guo, Tangyi
  email: transtor@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Fang
  surname: He
  fullname: He, Fang
  email: fanghe@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNpNkMFOAjEQhhuDiYg-gImHvkCxpd21eySAQkL0IHjddNspVrFr2gLyJj6uu0CMp5lM_v-b5LtEHV97QOiG0T5jtLhbzBYv_QEdiD7nUoqsOENdlmWSUMryTrsPBCloRi_QZYzvzVVkjHXRz6j2Cb4TGe5UADxMCXxytccTr2sDgYzhMPETpF0dPrCtA246HnQCg6egtnsy3qQ9foU3p9cNYrUKEKPbAh4Ht3V-hWemhVqn1QG99AegSpug1i4mp_-SDdm4NhSv0LlV6wjXp9lDy4fJYjQl8-fH2Wg4J3rAZCIsz4wSeQFUWsUryqEwhufcVCqXnAt5zxUFJUyuKyMZzW1hK6s5rZiwVSV4D7EjV4c6xgC2_AruU4V9yWjZqi1btWWrtjypbTq3x44DgH_5jDbvMv4LSZF7xQ
CODEN ITISFG
Cites_doi 10.1109/TITS.2020.3014612
10.1002/hfm.21019
10.1016/j.trc.2019.09.009
10.1016/j.trc.2020.02.028
10.1007/s11042-023-14499-7
10.1016/j.trf.2016.05.009
10.1016/j.trf.2018.04.019
10.1016/j.trf.2017.11.021
10.1016/j.trf.2018.06.044
10.1016/j.trc.2020.102785
10.1109/TITS.2021.3108939
10.1109/TITS.2013.2297057
10.1109/TITS.2022.3156923
10.1109/TITS.2020.3019050
10.1016/j.amar.2020.100128
10.1016/j.aap.2020.105643
10.1016/j.trc.2023.104138
10.1080/13669877.2015.1042500
10.3390/su13020766
10.1016/j.jtte.2020.12.001
10.1016/j.trc.2021.103016
10.1109/CONFLUENCE.2017.7943120
10.1109/tits.2021.3119415
10.1016/j.eswa.2020.113240
10.1109/ITSC48978.2021.9564814
10.1109/TITS.2022.3147719
10.48550/ARXIV.1706.03762
10.34028/iajit/19/3A/1
10.1109/TVT.2020.3002491
10.1016/j.trc.2022.103906
10.1016/j.aap.2020.105908
10.1016/j.trc.2022.103561
10.1016/j.trc.2020.102917
10.1109/ACCESS.2018.2889751
10.1016/j.aap.2023.106972
10.1016/j.trf.2020.11.010
10.1109/TITS.2022.3173674
10.1016/j.trf.2021.04.008
10.1016/j.aap.2021.106477
10.1109/TITS.2021.3076140
10.1109/TITS.2023.3287308
10.1016/j.trc.2021.103531
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3388459
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 9722
ExternalDocumentID 10_1109_TITS_2024_3388459
10508735
Genre orig-research
GrantInformation_xml – fundername: High-Level Personnel Project of Jiangsu
  grantid: JSSCBS20210223
– fundername: National Natural Science Foundation of China
  grantid: 52002184
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30923011003
  funderid: 10.13039/501100012226
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M693935
  funderid: 10.13039/501100002858
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c218t-165da469e08fa3b03e9dd363dba68334873a0ea4d6cbd8106f9fbfc30b14fbb43
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208888300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sat Nov 29 06:35:07 EST 2025
Wed Aug 27 02:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-165da469e08fa3b03e9dd363dba68334873a0ea4d6cbd8106f9fbfc30b14fbb43
ORCID 0000-0002-6184-5379
0000-0002-8152-7642
0000-0001-9976-9845
PageCount 13
ParticipantIDs crossref_primary_10_1109_TITS_2024_3388459
ieee_primary_10508735
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
ref52
ref11
ref10
(ref6) 2022
(ref2) 2022
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
(ref1) 2022
ref7
ref9
ref3
ref5
(ref16) 2022
ref40
Ameen (ref24) 2022; 3
ref35
ref34
ref37
ref31
ref30
ref33
ref32
Talebloo (ref15) 2022
ref39
ref38
Qvistberg (ref36) 2021
Hassan (ref20) 2022
ref23
ref26
ref25
ref22
Li (ref4) 2016
ref21
ref28
ref27
ref29
Malhotra (ref47) 2016
References_xml – ident: ref25
  doi: 10.1109/TITS.2020.3014612
– ident: ref13
  doi: 10.1002/hfm.21019
– volume-title: Centers for Disease Control and Prevention
  year: 2022
  ident: ref2
– ident: ref30
  doi: 10.1016/j.trc.2019.09.009
– ident: ref7
  doi: 10.1016/j.trc.2020.02.028
– ident: ref43
  doi: 10.1007/s11042-023-14499-7
– volume-title: Driving Style Assessment Using Maneuver Transition Probabilities and Driver Operation Aggressiveness
  year: 2016
  ident: ref4
– ident: ref50
  doi: 10.1016/j.trf.2016.05.009
– ident: ref19
  doi: 10.1016/j.trf.2018.04.019
– ident: ref41
  doi: 10.1016/j.trf.2017.11.021
– ident: ref40
  doi: 10.1016/j.trf.2018.06.044
– volume-title: Road Traffic Injuries
  year: 2022
  ident: ref6
– ident: ref45
  doi: 10.1016/j.trc.2020.102785
– ident: ref46
  doi: 10.1109/TITS.2021.3108939
– ident: ref33
  doi: 10.1109/TITS.2013.2297057
– ident: ref31
  doi: 10.1109/TITS.2022.3156923
– ident: ref29
  doi: 10.1109/TITS.2020.3019050
– volume: 3
  start-page: 14
  issue: 1
  year: 2022
  ident: ref24
  article-title: Vehicular safety system: Driving behavior identification based on V2V data exchange system
  publication-title: Evol. Inf. Commun. Comput. Syst.
– ident: ref5
  doi: 10.1016/j.amar.2020.100128
– ident: ref21
  doi: 10.1016/j.aap.2020.105643
– ident: ref26
  doi: 10.1016/j.trc.2023.104138
– volume-title: International Transport Forum
  year: 2022
  ident: ref1
– ident: ref51
  doi: 10.1080/13669877.2015.1042500
– ident: ref9
  doi: 10.3390/su13020766
– ident: ref10
  doi: 10.1016/j.jtte.2020.12.001
– ident: ref12
  doi: 10.1016/j.trc.2021.103016
– volume-title: Anomaly Detection of Driver Behavior
  year: 2021
  ident: ref36
– ident: ref48
  doi: 10.1109/CONFLUENCE.2017.7943120
– ident: ref39
  doi: 10.1109/tits.2021.3119415
– ident: ref42
  doi: 10.1016/j.eswa.2020.113240
– ident: ref37
  doi: 10.1109/ITSC48978.2021.9564814
– ident: ref11
  doi: 10.1109/TITS.2022.3147719
– ident: ref52
  doi: 10.48550/ARXIV.1706.03762
– ident: ref44
  doi: 10.34028/iajit/19/3A/1
– ident: ref32
  doi: 10.1109/TVT.2020.3002491
– ident: ref38
  doi: 10.1016/j.trc.2022.103906
– ident: ref8
  doi: 10.1016/j.aap.2020.105908
– ident: ref14
  doi: 10.1016/j.trc.2022.103561
– ident: ref34
  doi: 10.1016/j.trc.2020.102917
– ident: ref35
  doi: 10.1109/ACCESS.2018.2889751
– ident: ref49
  doi: 10.1016/j.aap.2023.106972
– volume-title: A Practical Deep Learning Approach to Detect Aggressive Driving Behaviour
  year: 2022
  ident: ref15
– ident: ref18
  doi: 10.1016/j.trf.2020.11.010
– ident: ref27
  doi: 10.1109/TITS.2022.3173674
– ident: ref17
  doi: 10.1016/j.trf.2021.04.008
– ident: ref23
  doi: 10.1016/j.aap.2021.106477
– ident: ref3
  doi: 10.1109/TITS.2021.3076140
– volume-title: Aggressive Driving Data
  year: 2022
  ident: ref16
– ident: ref28
  doi: 10.1109/TITS.2023.3287308
– volume-title: Analysis of Aggressive Driving Using a Driving Simulator
  year: 2022
  ident: ref20
– ident: ref22
  doi: 10.1016/j.trc.2021.103531
– year: 2016
  ident: ref47
  article-title: LSTM-based encoder–decoder for multi-sensor anomaly detection
  publication-title: arXiv:1607.00148
SSID ssj0014511
Score 2.4183488
Snippet Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 9710
SubjectTerms attention mechanism
Computational modeling
Connected vehicles
context-aware
Data models
Deep learning
Driving behavior
heavy-duty vehicle
Safety
Sensors
Vehicle dynamics
Title Context-Aware Attention Encoder-Decoder Network for Connected Heavy-Duty Vehicle Aggressive Driving Identification Under Naturalistic Driving Conditions
URI https://ieeexplore.ieee.org/document/10508735
Volume 25
WOSCitedRecordID wos001208888300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxQADzyLKSx6YkFyS2onjsaJURUIVEgV1i_y4gS4tCmlR_4TPxY9QdWFgShQ5iaXjxPfcx7kIXUNsEq50QeKuSQnjBSUZcEaMUXb5UMZAehHXRz4aZZOJeKqL1X0tDAD45DPouFMfyzdzvXCuMvuFW3OC06SBGpynoVhrHTJwQlteHLXLiLAD6xBmHInb8cP42VLBLutYQpYxp0u6sQltdFXxm8pg_5_TOUB7tfWIewHuQ7QFsyO0u6EpeIy-vd6UpbO9L1kC7lVVSGjE9zNXvl6SPvgjHoUEcGytVuzTXbQ1PvEQ5HJF-otqhV_h3b0F9948J7e_Rdwvp84BgUN5b1H7-7BvnoRH0mt4eOXn9Uj7ZBOywlroZXA_vhuSuv0C0Xbfr0icJkZa9gxRVkiqIgrCGJpSo2SauQJeTmUEkplUK5NZalmIQhWaRipmhVKMnqDmbD6DU4Qt50qE0kLHQjHgPNNU60gATbRJMpW00c0vHvlHUNnIPTuJRO7Ayx14eQ1eG7UcFhsDAwxnf1w_Rzvu9pC1d4GaVbmAS7Stl9X0s7zyi-gHNKrJWg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEH1iLK6gMnJJekdhYfK0rVihIhUVBvkZcJ9NKikBb1T_hcbCdUvXDglCiynEjPzswbz7xB6Bp8HURSZcRv6ZCwKKMkhogRraVZPpQxEE7EdRAlSTwa8aeqWN3VwgCASz6Dpr11Z_l6qmY2VGZ2uHEnIhqsow3bOqsq11oeGlipLSeP2mKEm6HVIabv8dthf_hsyGCLNQ0li5lVJl0xQyt9VZxZ6e7984P20W7lP-J2CfgBWoPJIdpZURU8Qt9OccoQ2vaXyAG3i6JMacT3E1vAnpMOuCtOyhRwbPxW7BJelHE_cQ_EfEE6s2KBX-HdvgW33xwrNz9G3MnHNgSBywLfrIr4Ydc-CSfCqXg47eflSDOzLvPC6uilez-865GqAQNRxvIXxA8DLQx_Bi_OBJUeBa41DamWIoxtCW9EhQeC6VBJHRtymfFMZop60meZlIweo9pkOoEThA3rCrhUXPlcMoiiWFGlPA40UDqIZdBAN794pB-lzkbq-InHUwteasFLK_AaqG6xWBlYwnD6x_MrtNUbPg7SQT95OEPbdqoyh-8c1Yp8BhdoU82L8Wd-6RbUD9f-zKM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-Aware+Attention+Encoder-Decoder+Network+for+Connected+Heavy-Duty+Vehicle+Aggressive+Driving+Identification+Under+Naturalistic+Driving+Conditions&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Tang%2C+Kun&rft.au=Yang%2C+Li&rft.au=Ma%2C+Yongfeng&rft.au=Guo%2C+Tangyi&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=8&rft.spage=9710&rft.epage=9722&rft_id=info:doi/10.1109%2FTITS.2024.3388459&rft.externalDocID=10508735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon