Context-Aware Attention Encoder-Decoder Network for Connected Heavy-Duty Vehicle Aggressive Driving Identification Under Naturalistic Driving Conditions
Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily focused on the driving behavior of light-duty vehicles based on analysis methods using simulation or questionnaire data, while heavy-duty vehi...
Uloženo v:
| Vydáno v: | IEEE transactions on intelligent transportation systems Ročník 25; číslo 8; s. 9710 - 9722 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2024
|
| Témata: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily focused on the driving behavior of light-duty vehicles based on analysis methods using simulation or questionnaire data, while heavy-duty vehicles, which bear significant responsibility for fatal accidents, are seldom investigated. This study develops a context-aware attention encoder-decoder deep framework for aggressive driving identification, utilizing real massive multi-source heterogeneous data collected under naturalistic driving conditions. The proposed framework incorporates vehicle-related, driving-related, weather-related and environment-related data. Through the BiLSTM based encoder-decoder deep architecture, high-level representations of driving behavior are learned from driving signals layer by layer, and temporal dependencies are captured from both forward and backward directions. By learning context-aware personalized latent semantic vectors at different time step, the model is capable of adaptively focusing on the important information for prediction. To our knowledge, the aggressive driving of heavy-duty vehicles under connected and naturalistic driving conditions has been rarely explored. This study contributes to the current understanding in this field. The proposed framework is evaluated based on the multi-source heterogeneous driving behavior data generated from over 13000 vehicles in a connected environment under naturalistic driving conditions. Empirical results from extensive experiments validate that the proposed model outperforms competing models, providing a promising approach with high effectiveness and robustness for aggressive driving behavior identification. |
|---|---|
| AbstractList | Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily focused on the driving behavior of light-duty vehicles based on analysis methods using simulation or questionnaire data, while heavy-duty vehicles, which bear significant responsibility for fatal accidents, are seldom investigated. This study develops a context-aware attention encoder-decoder deep framework for aggressive driving identification, utilizing real massive multi-source heterogeneous data collected under naturalistic driving conditions. The proposed framework incorporates vehicle-related, driving-related, weather-related and environment-related data. Through the BiLSTM based encoder-decoder deep architecture, high-level representations of driving behavior are learned from driving signals layer by layer, and temporal dependencies are captured from both forward and backward directions. By learning context-aware personalized latent semantic vectors at different time step, the model is capable of adaptively focusing on the important information for prediction. To our knowledge, the aggressive driving of heavy-duty vehicles under connected and naturalistic driving conditions has been rarely explored. This study contributes to the current understanding in this field. The proposed framework is evaluated based on the multi-source heterogeneous driving behavior data generated from over 13000 vehicles in a connected environment under naturalistic driving conditions. Empirical results from extensive experiments validate that the proposed model outperforms competing models, providing a promising approach with high effectiveness and robustness for aggressive driving behavior identification. |
| Author | Tang, Kun Yang, Li Guo, Tangyi He, Fang Ma, Yongfeng |
| Author_xml | – sequence: 1 givenname: Kun orcidid: 0000-0001-9976-9845 surname: Tang fullname: Tang, Kun email: tangkun@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Li orcidid: 0000-0002-8152-7642 surname: Yang fullname: Yang, Li email: yangli945@126.com organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Yongfeng orcidid: 0000-0002-6184-5379 surname: Ma fullname: Ma, Yongfeng email: mayf@seu.edu.cn organization: School of Transportation, Southeast University, Nanjing, China – sequence: 4 givenname: Tangyi surname: Guo fullname: Guo, Tangyi email: transtor@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 5 givenname: Fang surname: He fullname: He, Fang email: fanghe@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
| BookMark | eNpNkMFOAjEQhhuDiYg-gImHvkCxpd21eySAQkL0IHjddNspVrFr2gLyJj6uu0CMp5lM_v-b5LtEHV97QOiG0T5jtLhbzBYv_QEdiD7nUoqsOENdlmWSUMryTrsPBCloRi_QZYzvzVVkjHXRz6j2Cb4TGe5UADxMCXxytccTr2sDgYzhMPETpF0dPrCtA246HnQCg6egtnsy3qQ9foU3p9cNYrUKEKPbAh4Ht3V-hWemhVqn1QG99AegSpug1i4mp_-SDdm4NhSv0LlV6wjXp9lDy4fJYjQl8-fH2Wg4J3rAZCIsz4wSeQFUWsUryqEwhufcVCqXnAt5zxUFJUyuKyMZzW1hK6s5rZiwVSV4D7EjV4c6xgC2_AruU4V9yWjZqi1btWWrtjypbTq3x44DgH_5jDbvMv4LSZF7xQ |
| CODEN | ITISFG |
| Cites_doi | 10.1109/TITS.2020.3014612 10.1002/hfm.21019 10.1016/j.trc.2019.09.009 10.1016/j.trc.2020.02.028 10.1007/s11042-023-14499-7 10.1016/j.trf.2016.05.009 10.1016/j.trf.2018.04.019 10.1016/j.trf.2017.11.021 10.1016/j.trf.2018.06.044 10.1016/j.trc.2020.102785 10.1109/TITS.2021.3108939 10.1109/TITS.2013.2297057 10.1109/TITS.2022.3156923 10.1109/TITS.2020.3019050 10.1016/j.amar.2020.100128 10.1016/j.aap.2020.105643 10.1016/j.trc.2023.104138 10.1080/13669877.2015.1042500 10.3390/su13020766 10.1016/j.jtte.2020.12.001 10.1016/j.trc.2021.103016 10.1109/CONFLUENCE.2017.7943120 10.1109/tits.2021.3119415 10.1016/j.eswa.2020.113240 10.1109/ITSC48978.2021.9564814 10.1109/TITS.2022.3147719 10.48550/ARXIV.1706.03762 10.34028/iajit/19/3A/1 10.1109/TVT.2020.3002491 10.1016/j.trc.2022.103906 10.1016/j.aap.2020.105908 10.1016/j.trc.2022.103561 10.1016/j.trc.2020.102917 10.1109/ACCESS.2018.2889751 10.1016/j.aap.2023.106972 10.1016/j.trf.2020.11.010 10.1109/TITS.2022.3173674 10.1016/j.trf.2021.04.008 10.1016/j.aap.2021.106477 10.1109/TITS.2021.3076140 10.1109/TITS.2023.3287308 10.1016/j.trc.2021.103531 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TITS.2024.3388459 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 9722 |
| ExternalDocumentID | 10_1109_TITS_2024_3388459 10508735 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: High-Level Personnel Project of Jiangsu grantid: JSSCBS20210223 – fundername: National Natural Science Foundation of China grantid: 52002184 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 30923011003 funderid: 10.13039/501100012226 – fundername: China Postdoctoral Science Foundation grantid: 2021M693935 funderid: 10.13039/501100002858 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c218t-165da469e08fa3b03e9dd363dba68334873a0ea4d6cbd8106f9fbfc30b14fbb43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208888300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sat Nov 29 06:35:07 EST 2025 Wed Aug 27 02:33:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c218t-165da469e08fa3b03e9dd363dba68334873a0ea4d6cbd8106f9fbfc30b14fbb43 |
| ORCID | 0000-0002-6184-5379 0000-0002-8152-7642 0000-0001-9976-9845 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TITS_2024_3388459 ieee_primary_10508735 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref14 ref52 ref11 ref10 (ref6) 2022 (ref2) 2022 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 (ref1) 2022 ref7 ref9 ref3 ref5 (ref16) 2022 ref40 Ameen (ref24) 2022; 3 ref35 ref34 ref37 ref31 ref30 ref33 ref32 Talebloo (ref15) 2022 ref39 ref38 Qvistberg (ref36) 2021 Hassan (ref20) 2022 ref23 ref26 ref25 ref22 Li (ref4) 2016 ref21 ref28 ref27 ref29 Malhotra (ref47) 2016 |
| References_xml | – ident: ref25 doi: 10.1109/TITS.2020.3014612 – ident: ref13 doi: 10.1002/hfm.21019 – volume-title: Centers for Disease Control and Prevention year: 2022 ident: ref2 – ident: ref30 doi: 10.1016/j.trc.2019.09.009 – ident: ref7 doi: 10.1016/j.trc.2020.02.028 – ident: ref43 doi: 10.1007/s11042-023-14499-7 – volume-title: Driving Style Assessment Using Maneuver Transition Probabilities and Driver Operation Aggressiveness year: 2016 ident: ref4 – ident: ref50 doi: 10.1016/j.trf.2016.05.009 – ident: ref19 doi: 10.1016/j.trf.2018.04.019 – ident: ref41 doi: 10.1016/j.trf.2017.11.021 – ident: ref40 doi: 10.1016/j.trf.2018.06.044 – volume-title: Road Traffic Injuries year: 2022 ident: ref6 – ident: ref45 doi: 10.1016/j.trc.2020.102785 – ident: ref46 doi: 10.1109/TITS.2021.3108939 – ident: ref33 doi: 10.1109/TITS.2013.2297057 – ident: ref31 doi: 10.1109/TITS.2022.3156923 – ident: ref29 doi: 10.1109/TITS.2020.3019050 – volume: 3 start-page: 14 issue: 1 year: 2022 ident: ref24 article-title: Vehicular safety system: Driving behavior identification based on V2V data exchange system publication-title: Evol. Inf. Commun. Comput. Syst. – ident: ref5 doi: 10.1016/j.amar.2020.100128 – ident: ref21 doi: 10.1016/j.aap.2020.105643 – ident: ref26 doi: 10.1016/j.trc.2023.104138 – volume-title: International Transport Forum year: 2022 ident: ref1 – ident: ref51 doi: 10.1080/13669877.2015.1042500 – ident: ref9 doi: 10.3390/su13020766 – ident: ref10 doi: 10.1016/j.jtte.2020.12.001 – ident: ref12 doi: 10.1016/j.trc.2021.103016 – volume-title: Anomaly Detection of Driver Behavior year: 2021 ident: ref36 – ident: ref48 doi: 10.1109/CONFLUENCE.2017.7943120 – ident: ref39 doi: 10.1109/tits.2021.3119415 – ident: ref42 doi: 10.1016/j.eswa.2020.113240 – ident: ref37 doi: 10.1109/ITSC48978.2021.9564814 – ident: ref11 doi: 10.1109/TITS.2022.3147719 – ident: ref52 doi: 10.48550/ARXIV.1706.03762 – ident: ref44 doi: 10.34028/iajit/19/3A/1 – ident: ref32 doi: 10.1109/TVT.2020.3002491 – ident: ref38 doi: 10.1016/j.trc.2022.103906 – ident: ref8 doi: 10.1016/j.aap.2020.105908 – ident: ref14 doi: 10.1016/j.trc.2022.103561 – ident: ref34 doi: 10.1016/j.trc.2020.102917 – ident: ref35 doi: 10.1109/ACCESS.2018.2889751 – ident: ref49 doi: 10.1016/j.aap.2023.106972 – volume-title: A Practical Deep Learning Approach to Detect Aggressive Driving Behaviour year: 2022 ident: ref15 – ident: ref18 doi: 10.1016/j.trf.2020.11.010 – ident: ref27 doi: 10.1109/TITS.2022.3173674 – ident: ref17 doi: 10.1016/j.trf.2021.04.008 – ident: ref23 doi: 10.1016/j.aap.2021.106477 – ident: ref3 doi: 10.1109/TITS.2021.3076140 – volume-title: Aggressive Driving Data year: 2022 ident: ref16 – ident: ref28 doi: 10.1109/TITS.2023.3287308 – volume-title: Analysis of Aggressive Driving Using a Driving Simulator year: 2022 ident: ref20 – ident: ref22 doi: 10.1016/j.trc.2021.103531 – year: 2016 ident: ref47 article-title: LSTM-based encoder–decoder for multi-sensor anomaly detection publication-title: arXiv:1607.00148 |
| SSID | ssj0014511 |
| Score | 2.4183488 |
| Snippet | Driving behavior analysis and identification are of great significance for improving traffic safety and reducing fuel consumption. Existing methods primarily... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 9710 |
| SubjectTerms | attention mechanism Computational modeling Connected vehicles context-aware Data models Deep learning Driving behavior heavy-duty vehicle Safety Sensors Vehicle dynamics |
| Title | Context-Aware Attention Encoder-Decoder Network for Connected Heavy-Duty Vehicle Aggressive Driving Identification Under Naturalistic Driving Conditions |
| URI | https://ieeexplore.ieee.org/document/10508735 |
| Volume | 25 |
| WOSCitedRecordID | wos001208888300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxQADzyLKSx6YkFyS2onjsaJURUIVEgV1i_y4gS4tCmlR_4TPxY9QdWFgShQ5iaXjxPfcx7kIXUNsEq50QeKuSQnjBSUZcEaMUXb5UMZAehHXRz4aZZOJeKqL1X0tDAD45DPouFMfyzdzvXCuMvuFW3OC06SBGpynoVhrHTJwQlteHLXLiLAD6xBmHInb8cP42VLBLutYQpYxp0u6sQltdFXxm8pg_5_TOUB7tfWIewHuQ7QFsyO0u6EpeIy-vd6UpbO9L1kC7lVVSGjE9zNXvl6SPvgjHoUEcGytVuzTXbQ1PvEQ5HJF-otqhV_h3b0F9948J7e_Rdwvp84BgUN5b1H7-7BvnoRH0mt4eOXn9Uj7ZBOywlroZXA_vhuSuv0C0Xbfr0icJkZa9gxRVkiqIgrCGJpSo2SauQJeTmUEkplUK5NZalmIQhWaRipmhVKMnqDmbD6DU4Qt50qE0kLHQjHgPNNU60gATbRJMpW00c0vHvlHUNnIPTuJRO7Ayx14eQ1eG7UcFhsDAwxnf1w_Rzvu9pC1d4GaVbmAS7Stl9X0s7zyi-gHNKrJWg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEH1iLK6gMnJJekdhYfK0rVihIhUVBvkZcJ9NKikBb1T_hcbCdUvXDglCiynEjPzswbz7xB6Bp8HURSZcRv6ZCwKKMkhogRraVZPpQxEE7EdRAlSTwa8aeqWN3VwgCASz6Dpr11Z_l6qmY2VGZ2uHEnIhqsow3bOqsq11oeGlipLSeP2mKEm6HVIabv8dthf_hsyGCLNQ0li5lVJl0xQyt9VZxZ6e7984P20W7lP-J2CfgBWoPJIdpZURU8Qt9OccoQ2vaXyAG3i6JMacT3E1vAnpMOuCtOyhRwbPxW7BJelHE_cQ_EfEE6s2KBX-HdvgW33xwrNz9G3MnHNgSBywLfrIr4Ydc-CSfCqXg47eflSDOzLvPC6uilez-865GqAQNRxvIXxA8DLQx_Bi_OBJUeBa41DamWIoxtCW9EhQeC6VBJHRtymfFMZop60meZlIweo9pkOoEThA3rCrhUXPlcMoiiWFGlPA40UDqIZdBAN794pB-lzkbq-InHUwteasFLK_AaqG6xWBlYwnD6x_MrtNUbPg7SQT95OEPbdqoyh-8c1Yp8BhdoU82L8Wd-6RbUD9f-zKM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-Aware+Attention+Encoder-Decoder+Network+for+Connected+Heavy-Duty+Vehicle+Aggressive+Driving+Identification+Under+Naturalistic+Driving+Conditions&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Tang%2C+Kun&rft.au=Yang%2C+Li&rft.au=Ma%2C+Yongfeng&rft.au=Guo%2C+Tangyi&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=8&rft.spage=9710&rft.epage=9722&rft_id=info:doi/10.1109%2FTITS.2024.3388459&rft.externalDocID=10508735 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |