Choosing allowability boundaries for describing objects in subject areas
Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental data mining problems. This article proposes a method for detecting specific errors with the involvement of experts from subject areas to fill...
Uložené v:
| Vydané v: | IAES international journal of artificial intelligence Ročník 13; číslo 1; s. 329 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.03.2024
|
| ISSN: | 2089-4872, 2252-8938 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental data mining problems. This article proposes a method for detecting specific errors with the involvement of experts from subject areas to fill knowledge. The proposed method about outliers hypothesizes that they locate closer to logical boundaries of intervals derived from pair features, and the interval ranges vary in different domains. We construct intervals leveraging pair feature values. While forming knowledge in a specific field, a domain specialist checks the logical allowability of objects based on the range of the intervals. If the objects are logical outliers, the specialist ignores or corrects them. We offer the general algorithm for the formation of the database based on the proposed method in the form of a pseudo-code, and we provide comparison results with existing methods. |
|---|---|
| AbstractList | Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental data mining problems. This article proposes a method for detecting specific errors with the involvement of experts from subject areas to fill knowledge. The proposed method about outliers hypothesizes that they locate closer to logical boundaries of intervals derived from pair features, and the interval ranges vary in different domains. We construct intervals leveraging pair feature values. While forming knowledge in a specific field, a domain specialist checks the logical allowability of objects based on the range of the intervals. If the objects are logical outliers, the specialist ignores or corrects them. We offer the general algorithm for the formation of the database based on the proposed method in the form of a pseudo-code, and we provide comparison results with existing methods. |
| Author | Madrakhimov, Shavkat Makharov, Kodirbek Lolaev, Musulmon Saidov, Doniyor |
| Author_xml | – sequence: 1 givenname: Musulmon orcidid: 0000-0001-5026-3640 surname: Lolaev fullname: Lolaev, Musulmon – sequence: 2 givenname: Shavkat orcidid: 0000-0001-6247-2730 surname: Madrakhimov fullname: Madrakhimov, Shavkat – sequence: 3 givenname: Kodirbek orcidid: 0000-0002-9341-4602 surname: Makharov fullname: Makharov, Kodirbek – sequence: 4 givenname: Doniyor orcidid: 0000-0002-0516-2610 surname: Saidov fullname: Saidov, Doniyor |
| BookMark | eNqFkL1OwzAUhS1UJErpK6C8QIJ_msSWWFAFFKkSC8zWtX0DtwpxZaegvj1tYWJhOmc43xm-SzYZ4oCMXQteCVEbcUMboOpTqIpEtd0qaUqlmjM2lbKWpTZKTw6da1MudCsv2DxnclwII3Vt2ilbLd9jzDS8FdD38Qsc9TTuCxd3Q4BEmIsupiJg9onccRbdBv2YCxqKvDv1AhJCvmLnHfQZ5785Y68P9y_LVbl-fnxa3q1LL4VuSuNA8UY61IvgW5CC6xCCkgulhADe1B5bjaAa0I006FE73nYOg0LZYWjVjDU_vz7FnBN2dpvoA9LeCm5PSuxRiT0osSTsSYk9KDmAt39ATyOMFIcxAfX_4d-ykW9Y |
| CitedBy_id | crossref_primary_10_3390_s25123832 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.11591/ijai.v13.i1.pp329-336 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2252-8938 |
| ExternalDocumentID | 10_11591_ijai_v13_i1_pp329_336 |
| GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQGLB PQQKQ PROAC RNS |
| ID | FETCH-LOGICAL-c2186-9ba3062be84dc7a2108ddd3243311a065ce78ea36a8629ece8b07fbed3e2fed73 |
| ISSN | 2089-4872 |
| IngestDate | Tue Nov 18 22:11:20 EST 2025 Sat Nov 29 05:33:40 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2186-9ba3062be84dc7a2108ddd3243311a065ce78ea36a8629ece8b07fbed3e2fed73 |
| ORCID | 0000-0001-5026-3640 0000-0002-9341-4602 0000-0002-0516-2610 0000-0001-6247-2730 |
| OpenAccessLink | https://ijai.iaescore.com/index.php/IJAI/article/download/22090/13833 |
| ParticipantIDs | crossref_primary_10_11591_ijai_v13_i1_pp329_336 crossref_citationtrail_10_11591_ijai_v13_i1_pp329_336 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IAES international journal of artificial intelligence |
| PublicationYear | 2024 |
| SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
| Score | 2.2487826 |
| Snippet | Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 329 |
| Title | Choosing allowability boundaries for describing objects in subject areas |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: P5Z dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: K7- dateStart: 20170101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELb0TLQz5wW6XdxPbaOValqKiiQtoi9Rb5tdp0l2SVfdD-sf4-xnZeohXQA5coiteTjefTvDyeQegjeFvKgCUdMZ2Cg0IJjURiRcSl0pwbTVNpfLMJfnYmLi7Sb4PBTXMWZrvgRSGurtLlf2U1PANmu6Oz92B3SxQewD0wHa7Adrj-E-OPZmXpAwBuS_1nKMN9PVS-fZLzi31iobFOXCif8qwufUZHXgxXG38_lC5TvW-2fjk8nvjKEl3wsFdywv2JuhBF3qvw2eb6gPcMH-Eir5vVZvGj2_j_Kk0l5zOAix-ezOR2Ltfd6HwmqzB0WoLuVbY9VjSRuQkjn0AoXZdVP3qR0C59Kwi5ZCTSCJymIJFteJYwkNJpqPrSSmlyC41B5JIQMbmtCljqdEF-KfP9bUz2c9BJS_hxRMgdtbd_04ltpqL3kYBS5uhkQCfL48zTyYDOA_Qw4Sx10vSUR40ci8FqFqzbnSWuhiHrqvpTyokQtRnnY4FgSox979t2OerD7O7VB3d-Qs-O6hlE58_Qk9qTwYcBgc_RwBYv0NOmSwiulcZLdNIAEvcBiTtAYgAk7gCJa0DivMA1ILEH5Cv0_fPx-dFJVPfviLTrdBalSoJDmigrqNFcJvFIGGPAgickjiXYvtpyYSUZS3CrU6utUCM-VdYQm0yt4eQ12inKwr5BWLLRdCyE1UxLqmExmYtcMM5jYsSU0l3EmtXIdF3c3vVYWWR_ZuAuOmjnLUN5l7_M2Lv3jLfocYf8d2hnXW3se_RIb9f5qvrgkfMLKTyhTQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Choosing+allowability+boundaries+for+describing+objects+in+subject+areas&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Lolaev%2C+Musulmon&rft.au=Madrakhimov%2C+Shavkat&rft.au=Makharov%2C+Kodirbek&rft.au=Saidov%2C+Doniyor&rft.date=2024-03-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=13&rft.issue=1&rft.spage=329&rft_id=info:doi/10.11591%2Fijai.v13.i1.pp329-336&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v13_i1_pp329_336 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |