A stacking ensemble approach for pore pressure prediction in real-time during drilling based on mud log data

The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with drilling operations. In order to surmount the limitations of empirical methods and to reduce reliance on logging-while-drilling data, this study pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petroleum science
Hauptverfasser: Zhang, Dong-Yang, Ma, Tian-Shou, Liu, Yang, Zhang, De-Cheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2025
Schlagworte:
ISSN:1995-8226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with drilling operations. In order to surmount the limitations of empirical methods and to reduce reliance on logging-while-drilling data, this study proposed a stacking ensemble approach that utilized only conventional mud log data. The workflow involves the preliminary processing of data using isolation forest and wavelet thresholding techniques to effectively eliminate outliers and noise. The Eaton index was estimated using a Bayesian inversion algorithm, and pore pressure was estimated by integrating the dc exponent and Eaton method. A feature selection strategy combining data distribution characteristics and regression-based importance ranking was used to optimize the input parameters. Subsequently, a stacking approach was developed for predicting pore pressure, and the corresponding base learner, meta learner, and hyperparameters were optimized. Finally, the validity of the optimized model was substantiated through field data from three test wells (X1, X5, X3) under different drilling scenarios. The results indicated that the global optimal Eaton index of the block was 0.2449, the maximum percentage error of pore pressure estimation was 3.66%, and the corresponding average error was 1.59% compared to the wireline formation test data. The optimal combination of input features was determined to be R-ROP, WOB, TG, PT, MW, PFI, TVD, H, BR, BT, and SPP. The optimal basic learners were identified as BPNN, CNN, LSTM, and LightGBM, while the optimal meta learners were XGBoost. Prediction accuracy is improved when offset wells are densely distributed, spatially balanced, and proximal to the target well; conversely, sparse or distant offset wells result in reduced prediction performance. The mean absolute percentage errors for test offset well X1, X5, and X3 were 0.4353%, 0.4646%, and 0.6856%, respectively, with the corresponding R2 values of 0.9362, 0.9078, and 0.8950, respectively. Consequently, this approach has the capacity to accurately and in real-time predict pore pressure using solely conventional mud log data. This capability enables timely adjustments to drilling parameters, thereby enhancing operational efficiency and mitigating drilling risks.
AbstractList The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with drilling operations. In order to surmount the limitations of empirical methods and to reduce reliance on logging-while-drilling data, this study proposed a stacking ensemble approach that utilized only conventional mud log data. The workflow involves the preliminary processing of data using isolation forest and wavelet thresholding techniques to effectively eliminate outliers and noise. The Eaton index was estimated using a Bayesian inversion algorithm, and pore pressure was estimated by integrating the dc exponent and Eaton method. A feature selection strategy combining data distribution characteristics and regression-based importance ranking was used to optimize the input parameters. Subsequently, a stacking approach was developed for predicting pore pressure, and the corresponding base learner, meta learner, and hyperparameters were optimized. Finally, the validity of the optimized model was substantiated through field data from three test wells (X1, X5, X3) under different drilling scenarios. The results indicated that the global optimal Eaton index of the block was 0.2449, the maximum percentage error of pore pressure estimation was 3.66%, and the corresponding average error was 1.59% compared to the wireline formation test data. The optimal combination of input features was determined to be R-ROP, WOB, TG, PT, MW, PFI, TVD, H, BR, BT, and SPP. The optimal basic learners were identified as BPNN, CNN, LSTM, and LightGBM, while the optimal meta learners were XGBoost. Prediction accuracy is improved when offset wells are densely distributed, spatially balanced, and proximal to the target well; conversely, sparse or distant offset wells result in reduced prediction performance. The mean absolute percentage errors for test offset well X1, X5, and X3 were 0.4353%, 0.4646%, and 0.6856%, respectively, with the corresponding R2 values of 0.9362, 0.9078, and 0.8950, respectively. Consequently, this approach has the capacity to accurately and in real-time predict pore pressure using solely conventional mud log data. This capability enables timely adjustments to drilling parameters, thereby enhancing operational efficiency and mitigating drilling risks.
Author Liu, Yang
Zhang, De-Cheng
Zhang, Dong-Yang
Ma, Tian-Shou
Author_xml – sequence: 1
  givenname: Dong-Yang
  surname: Zhang
  fullname: Zhang, Dong-Yang
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Sichuan, China
– sequence: 2
  givenname: Tian-Shou
  surname: Ma
  fullname: Ma, Tian-Shou
  email: matianshou@126.com, matianshou@swpu.edu.cn
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Sichuan, China
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, China
– sequence: 4
  givenname: De-Cheng
  surname: Zhang
  fullname: Zhang, De-Cheng
  organization: School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
BookMark eNp9kM1OwzAQhH0oEi3wBhz8Agm28-sLUlXxJ1XiAmdrY6_BxYkjO0Xi7UkUzpx2pJ0Z7X47shnCgITccpZzxuu7Uz7ilLTLBRNVzmTOBNuQLZeyyloh6kuyS-nEWMmbWmyJ39M0gf5ywwfFIWHfeaQwjjGA_qQ2RDqGiHSMmNJ5FcbpyYWBuoFGBJ9NrkdqznGpMNF5v4gOEho6u_qzoT7MG5jgmlxY8Alv_uYVeX98eDs8Z8fXp5fD_phpwVuWla0xtuK862qJtmTaVoZrI1tZldA2trYldhqsFS3UyMsam0bzAgroCltVvLgi5dqrY0gpolVjdD3EH8WZWiipk1opqYWSYlLNlObY_RrD-bZvh1HNDhz0_HFEPSkT3P8Fv6oUeOM
Cites_doi 10.1016/j.egyr.2022.01.012
10.1016/j.jhydrol.2021.126266
10.1007/s13369-018-3574-7
10.1016/j.eswa.2023.121729
10.1016/j.petrol.2020.108182
10.1016/j.jrmge.2020.05.011
10.1109/TR.2018.2847353
10.1007/s40789-023-00579-4
10.1016/j.petsci.2023.11.006
10.1007/s40948-022-00467-2
10.1016/j.petrol.2015.02.022
10.1016/j.rockmb.2024.100166
10.1016/j.petrol.2021.108689
10.1016/j.petsci.2023.10.011
10.1016/j.apenergy.2023.122079
10.1016/j.autcon.2021.103827
10.1016/j.geoen.2024.213608
10.1016/j.earscirev.2011.06.001
10.1002/dug2.12047
10.2118/206748-PA
10.1016/0148-9062(65)90022-7
10.1080/01621459.1993.10476408
10.1109/TVCG.2020.3030352
10.1190/1.1500391
10.2118/204101-PA
10.1080/10916466.2010.483439
10.1080/19392699.2021.1959324
10.1016/j.apenergy.2022.118936
10.1016/j.ijmst.2024.06.010
10.2118/223962-PA
10.1016/j.petsci.2024.05.012
10.1109/ACCESS.2024.3440168
10.5897/JGMR15.0218
10.1007/s00603-022-03089-y
10.1016/j.conbuildmat.2020.121396
10.1016/j.petlm.2023.12.001
10.1107/S0907444905036693
10.2118/27488-PA
10.1016/j.petrol.2022.110156
10.1016/j.petsci.2022.09.006
10.1007/s12594-010-0053-5
10.1016/j.petrol.2021.109771
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.petsci.2025.09.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_petsci_2025_09_020
S1995822625003516
GroupedDBID -SB
-S~
-Y2
.86
.VR
06D
0R~
0VY
123
29O
2JY
2VQ
2~H
30V
4.4
408
40D
5VR
5VS
67M
6I.
6NX
8FE
8FG
8FH
92H
92I
95.
95~
AAFTH
AAFWJ
AAIAL
AAKKN
AALRI
AARHV
AAWCG
AAXUO
AAYWO
ABEEZ
ABFSG
ABJCF
ABMNI
ACACY
ACBXY
ACGFS
ACIWK
ACOMO
ACREN
ACSTC
ACULB
ACVFH
ADCNI
ADCSY
ADKPE
ADRFC
ADVLN
AEGNC
AEGXH
AENEX
AEUPX
AEUYN
AEZWR
AFBBN
AFFHD
AFGCZ
AFGXO
AFHIU
AFKRA
AFLOW
AFPKN
AFPUW
AFUIB
AFWTZ
AGGLG
AGJBK
AGWIL
AHBYD
AHSBF
AHWEU
AHYZX
AIGII
AITUG
AIXLP
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMRAJ
AMTXH
BA0
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CS3
CW9
DU5
EBS
EJD
FDB
GQ7
GROUPED_DOAJ
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IPNFZ
IXC
I~X
I~Z
JBSCW
KOV
L6V
LK5
M41
M4Y
M7R
M7S
MA-
M~E
NU0
O9-
OK1
PCBAR
PF0
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
Q--
QOS
R9I
RIG
ROL
RPX
S1Z
S27
S3B
SCL
SDH
SEV
SHX
SOJ
T13
TCJ
TGT
TSV
TUC
U1G
U2A
U5L
VC2
WK8
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c2180-48ddf511bb69ef40cf5d1cd98954a87f6f4ebcaff28a6e146e77c13a3ab3f5513
ISSN 1995-8226
IngestDate Thu Nov 27 01:05:22 EST 2025
Wed Dec 10 14:28:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stacking ensemble approach
Mud log
Pore pressure
Real-time
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2180-48ddf511bb69ef40cf5d1cd98954a87f6f4ebcaff28a6e146e77c13a3ab3f5513
OpenAccessLink https://dx.doi.org/10.1016/j.petsci.2025.09.020
ParticipantIDs crossref_primary_10_1016_j_petsci_2025_09_020
elsevier_sciencedirect_doi_10_1016_j_petsci_2025_09_020
PublicationCentury 2000
PublicationDate 2025-9-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-9-00
PublicationDecade 2020
PublicationTitle Petroleum science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ma, Xiang, Shi (bib27) 2022; 8
Zhang, Li, Tan (bib53) 2023; 2
Chen, Cao, Gan (bib10) 2022; 210
Jaiswal, Samikannu (bib20) 2017
Zhang, Davoodi, Band (bib51) 2022; 8
Lu, Wang, Zhang (bib25) 2022; 43
Liu, Ting, Zhou (bib24) 2008
Gal, Rubinfeld (bib17) 2019; 94
Rashidi, Asadi (bib36) 2018
Yang, Feng, Shang (bib48) 2025; 30
Alasadi, Bhaya (bib3) 2017; 12
Yang, Wen (bib49) 2018; 67
Rzychoń, Żogała, Rog (bib40) 2022; 42
Dietterich (bib12) 2000; vol. 1857
Delavar, Ramezanzadeh (bib11) 2023; 56
Zounemat-Kermani, Batelaan, Fadaee (bib56) 2021; 598
Zhang (bib52) 2011; 108
Mitchell, Miska (bib30) 2011; vol. 12
Phan, Liu, AlTammar (bib35) 2022; 27
Zhang, Ma, Liu (bib50) 2025; 246
Rehm, McClendon (bib37) 1971
Ahmed Abdelaal, Salaheldin Elkatatny, Abdulazeez Abdulraheem (bib1) 2021
Zhao, Wu, Pu (bib55) 2024; 10
Azadpour, Manaman, Kadkhodaie-Ilkhchi (bib6) 2015; 128
Huang, Peng, Hu (bib19) 2024; 238
Rousseeuw, Croux (bib38) 1993; 88
Otchere, Ganat, Gholami (bib32) 2021; 200
Alsini, Almakrab, Ibrahim (bib5) 2021; 270
Dong, Sun, Xu (bib13) 2023; 20
Roy, Ray, Biswas (bib39) 2010; 75
Sayers, Johnson, Denyer (bib41) 2002; 67
Ma, Xiang, Gui (bib26) 2024; 67
Evans (bib15) 2006; 62
Chatzimparmpas, Martins, Kucher (bib9) 2020; 27
Bowers (bib7) 1995; 10
Kardani, Zhou, Nazem (bib21) 2021; 13
AlBahrani, Morita (bib4) 2022; 37
Huang, Xiong, Chen (bib18) 2023; 10
Eaton (bib14) 1975
Mughees, Kamran, Mughees (bib31) 2024; 12
Sharma (bib43) 2022; 1
Shehadeh, Alshboul, Al Mamlook (bib44) 2021; 129
Carneiro, Rocha, Carvalho (bib8) 2022; 314
Liang, Liu, Kang (bib22) 2024; 21
Peng, Ma, Chen (bib34) 2021; 203
Fillippone (bib57) 1982
Fissha, Ragam, Ikeda (bib16) 2025; 4
Shajari, Najibi (bib42) 2012; 30
Ugwu (bib46) 2015; 7
Ahmed, Elkatatny, Ali (bib2) 2019; 44
Van Zyl, Ye, Naidoo (bib47) 2024; 353
Pei, Song, Wang (bib33) 2024; 21
Mining (bib29) 2006; 10
Zhang, Lu, Jin (bib54) 2024; 21
Liu, Yang, Qin (bib23) 2024; 34
Teale (bib45) 1965; 2
Matinkia, Amraeiniya, Behboud (bib28) 2022; 211
Bowers (10.1016/j.petsci.2025.09.020_bib7) 1995; 10
Dietterich (10.1016/j.petsci.2025.09.020_bib12) 2000; vol. 1857
Ahmed Abdelaal (10.1016/j.petsci.2025.09.020_bib1) 2021
Gal (10.1016/j.petsci.2025.09.020_bib17) 2019; 94
Alsini (10.1016/j.petsci.2025.09.020_bib5) 2021; 270
Rousseeuw (10.1016/j.petsci.2025.09.020_bib38) 1993; 88
Fillippone (10.1016/j.petsci.2025.09.020_bib57) 1982
Dong (10.1016/j.petsci.2025.09.020_bib13) 2023; 20
AlBahrani (10.1016/j.petsci.2025.09.020_bib4) 2022; 37
Teale (10.1016/j.petsci.2025.09.020_bib45) 1965; 2
Rzychoń (10.1016/j.petsci.2025.09.020_bib40) 2022; 42
Chen (10.1016/j.petsci.2025.09.020_bib10) 2022; 210
Zhang (10.1016/j.petsci.2025.09.020_bib51) 2022; 8
Van Zyl (10.1016/j.petsci.2025.09.020_bib47) 2024; 353
Alasadi (10.1016/j.petsci.2025.09.020_bib3) 2017; 12
Yang (10.1016/j.petsci.2025.09.020_bib48) 2025; 30
Ugwu (10.1016/j.petsci.2025.09.020_bib46) 2015; 7
Jaiswal (10.1016/j.petsci.2025.09.020_bib20) 2017
Otchere (10.1016/j.petsci.2025.09.020_bib32) 2021; 200
Evans (10.1016/j.petsci.2025.09.020_bib15) 2006; 62
Zhao (10.1016/j.petsci.2025.09.020_bib55) 2024; 10
Sharma (10.1016/j.petsci.2025.09.020_bib43) 2022; 1
Rehm (10.1016/j.petsci.2025.09.020_bib37) 1971
Pei (10.1016/j.petsci.2025.09.020_bib33) 2024; 21
Peng (10.1016/j.petsci.2025.09.020_bib34) 2021; 203
Carneiro (10.1016/j.petsci.2025.09.020_bib8) 2022; 314
Ma (10.1016/j.petsci.2025.09.020_bib27) 2022; 8
Sayers (10.1016/j.petsci.2025.09.020_bib41) 2002; 67
Liu (10.1016/j.petsci.2025.09.020_bib24) 2008
Shehadeh (10.1016/j.petsci.2025.09.020_bib44) 2021; 129
Matinkia (10.1016/j.petsci.2025.09.020_bib28) 2022; 211
Zhang (10.1016/j.petsci.2025.09.020_bib50) 2025; 246
Eaton (10.1016/j.petsci.2025.09.020_bib14) 1975
Azadpour (10.1016/j.petsci.2025.09.020_bib6) 2015; 128
Zhang (10.1016/j.petsci.2025.09.020_bib52) 2011; 108
Fissha (10.1016/j.petsci.2025.09.020_bib16) 2025; 4
Phan (10.1016/j.petsci.2025.09.020_bib35) 2022; 27
Zhang (10.1016/j.petsci.2025.09.020_bib54) 2024; 21
Zhang (10.1016/j.petsci.2025.09.020_bib53) 2023; 2
Liang (10.1016/j.petsci.2025.09.020_bib22) 2024; 21
Lu (10.1016/j.petsci.2025.09.020_bib25) 2022; 43
Delavar (10.1016/j.petsci.2025.09.020_bib11) 2023; 56
Kardani (10.1016/j.petsci.2025.09.020_bib21) 2021; 13
Mining (10.1016/j.petsci.2025.09.020_bib29) 2006; 10
Mitchell (10.1016/j.petsci.2025.09.020_bib30) 2011; vol. 12
Huang (10.1016/j.petsci.2025.09.020_bib19) 2024; 238
Roy (10.1016/j.petsci.2025.09.020_bib39) 2010; 75
Zounemat-Kermani (10.1016/j.petsci.2025.09.020_bib56) 2021; 598
Shajari (10.1016/j.petsci.2025.09.020_bib42) 2012; 30
Chatzimparmpas (10.1016/j.petsci.2025.09.020_bib9) 2020; 27
Liu (10.1016/j.petsci.2025.09.020_bib23) 2024; 34
Yang (10.1016/j.petsci.2025.09.020_bib49) 2018; 67
Ma (10.1016/j.petsci.2025.09.020_bib26) 2024; 67
Huang (10.1016/j.petsci.2025.09.020_bib18) 2023; 10
Mughees (10.1016/j.petsci.2025.09.020_bib31) 2024; 12
Ahmed (10.1016/j.petsci.2025.09.020_bib2) 2019; 44
Rashidi (10.1016/j.petsci.2025.09.020_bib36) 2018
References_xml – volume: 10
  start-page: 18
  year: 2023
  ident: bib18
  article-title: Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models
  publication-title: Int. J. Coal Sci. Technol.
– volume: 21
  start-page: 582
  year: 2024
  end-page: 596
  ident: bib33
  article-title: Interpretation and characterization of rate of penetration intelligent prediction model
  publication-title: Pet. Sci.
– volume: 20
  start-page: 733
  year: 2023
  end-page: 752
  ident: bib13
  article-title: How to improve machine learning models for lithofacies identification by practical and novel ensemble strategy and principles
  publication-title: Pet. Sci.
– volume: 238
  year: 2024
  ident: bib19
  article-title: A multilayer stacking method base on RFE-SHAP feature selection strategy for recognition of driver’s mental load and emotional state
  publication-title: Expert Syst. Appl.
– volume: 353
  year: 2024
  ident: bib47
  article-title: Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: a comparative analysis of Grad-CAM and SHAP
  publication-title: Appl. Energy
– volume: 128
  start-page: 15
  year: 2015
  end-page: 23
  ident: bib6
  article-title: Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran
  publication-title: J. Petrol. Sci. Eng.
– year: 1975
  ident: bib14
  article-title: The Equation for Geopressure Prediction from Well Logs
– volume: 94
  start-page: 737
  year: 2019
  ident: bib17
  article-title: Data standardization
  publication-title: NYUL Rev.
– volume: 129
  year: 2021
  ident: bib44
  article-title: Machine learning models for predicting the residual value of heavy construction equipment: an evaluation of modified decision tree, LightGBM, and XGBoost regression
  publication-title: Autom. ConStruct.
– volume: 27
  start-page: 1547
  year: 2020
  end-page: 1557
  ident: bib9
  article-title: StackGenVis: alignment of data, algorithms, and models for stacking ensemble learning using performance metrics
  publication-title: IEEE Trans. Visual. Comput. Graph.
– year: 2021
  ident: bib1
  article-title: Pore pressure estimation while drilling using machine learning
  publication-title: ARMA/DGS/SEG International Geomechanics Symposium, Virtual
– year: 1971
  ident: bib37
  article-title: Measurement of Formation Pressure from Drilling Data
– start-page: 65
  year: 2017
  end-page: 68
  ident: bib20
  article-title: Application of random forest algorithm on feature subset selection and classification and regression
  publication-title: 2017 World Congress on Computing and Communication Technologies (WCCCT)
– volume: 34
  start-page: 763
  year: 2024
  end-page: 781
  ident: bib23
  article-title: Excess pore pressure behavior and evolution in deep coalbed methane reservoirs
  publication-title: Int. J. Min. Sci. Technol.
– year: 1982
  ident: bib57
  publication-title: Estimation of formation parameters and the prediction of overpressures from seismic data. SEG Technical Program Expanded Abstracts
– volume: 10
  start-page: 1
  year: 2024
  end-page: 10
  ident: bib55
  article-title: Application status and research progress of CO2 fracturing fluid in petroleum engineering: a brief review
  publication-title: Petroleum
– volume: 56
  start-page: 535
  year: 2023
  end-page: 564
  ident: bib11
  article-title: Pore pressure prediction by empirical and machine learning methods using conventional and drilling logs in carbonate rocks
  publication-title: Rock Mech. Rock Eng.
– volume: 203
  year: 2021
  ident: bib34
  article-title: Pore pressure evaluation of formation testing while drilling under supercharged conditions
  publication-title: J. Petrol. Sci. Eng.
– volume: vol. 12
  year: 2011
  ident: bib30
  publication-title: Fundamentals of Drilling Engineering. SPE Text Book Series
– volume: 7
  start-page: 31
  year: 2015
  end-page: 40
  ident: bib46
  article-title: An overview of pore pressure prediction using seismically-derived velocities
  publication-title: J. Geol. Min. Res.
– volume: 10
  start-page: 4
  year: 2006
  ident: bib29
  article-title: Data mining: concepts and techniques
  publication-title: Morgan Kaufinann
– volume: 8
  start-page: 2233
  year: 2022
  end-page: 2247
  ident: bib51
  article-title: A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques
  publication-title: Energy Rep.
– volume: 8
  start-page: 152
  year: 2022
  ident: bib27
  article-title: Horizontal
  publication-title: Geomech. Geophys. Geo-Energy Geo-Resourc.
– volume: 2
  start-page: 57
  year: 1965
  end-page: 73
  ident: bib45
  article-title: The concept of specific energy in rock drilling
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstracts
– volume: 246
  year: 2025
  ident: bib50
  article-title: Heterogeneous multi-task learning approach for rock strength prediction in real-time during drilling based on mud log data
  publication-title: Geoenergy Sci. Eng.
– volume: 67
  start-page: 1286
  year: 2002
  end-page: 1292
  ident: bib41
  article-title: Predrill pore-pressure prediction using seismic data
  publication-title: Geophysics
– volume: 200
  year: 2021
  ident: bib32
  article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models
  publication-title: J. Petrol. Sci. Eng.
– volume: 210
  year: 2022
  ident: bib10
  article-title: A hybrid partial least squares regression-based real time pore pressure estimation method for complex geological drilling process
  publication-title: J. Petrol. Sci. Eng.
– volume: 37
  start-page: 38
  year: 2022
  end-page: 66
  ident: bib4
  article-title: Risk-controlled wellbore stability criterion based on a machine-learning-assisted finite-element model
  publication-title: SPE Drill. Complet.
– volume: 21
  start-page: 3326
  year: 2024
  end-page: 3339
  ident: bib22
  article-title: A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model
  publication-title: Pet. Sci.
– volume: 30
  start-page: 339
  year: 2012
  end-page: 349
  ident: bib42
  article-title: Application of the dc-exponent method for abnormal pressure detection in Ahwaz oil field: a comparative study
  publication-title: Petrol. Sci. Technol.
– volume: 75
  start-page: 644
  year: 2010
  end-page: 660
  ident: bib39
  article-title: Overview of overpressure in Bengal basin, India
  publication-title: J. Geol. Soc. India
– volume: 108
  start-page: 50
  year: 2011
  end-page: 63
  ident: bib52
  article-title: Pore pressure prediction from well logs: methods, modifications, and new approaches
  publication-title: Earth Sci. Rev.
– volume: 270
  year: 2021
  ident: bib5
  article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor
  publication-title: Constr. Build. Mater.
– volume: 598
  year: 2021
  ident: bib56
  article-title: Ensemble machine learning paradigms in hydrology: a review
  publication-title: J. Hydrol.
– volume: 67
  start-page: 885
  year: 2018
  end-page: 896
  ident: bib49
  article-title: Ridge and lasso regression models for cross-version defect prediction
  publication-title: IEEE Trans. Reliab.
– volume: 30
  start-page: 524
  year: 2025
  end-page: 543
  ident: bib48
  article-title: A sequence learning approach for real-time and ahead-of-bit pore pressure prediction utilizing drilling data from the drilled section
  publication-title: SPE J.
– volume: 88
  start-page: 1273
  year: 1993
  end-page: 1283
  ident: bib38
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
– volume: 314
  year: 2022
  ident: bib8
  article-title: Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain
  publication-title: Appl. Energy
– volume: 27
  start-page: 39
  year: 2022
  end-page: 59
  ident: bib35
  article-title: Application of artificial intelligence to predict time-dependent mud-weight windows in real time
  publication-title: SPE J.
– volume: 62
  start-page: 72
  year: 2006
  end-page: 82
  ident: bib15
  article-title: Scaling and assessment of data quality
  publication-title: Biolog. Crystallogr.
– year: 2018
  ident: bib36
  article-title: An Artificial Intelligence Approach in Estimation of Formation Pore Pressure by Critical Drilling Data. ARMA US Rock Mechanics/Geomechanics Symposium
– volume: 12
  start-page: 108986
  year: 2024
  end-page: 109000
  ident: bib31
  article-title: New appliance signatures for nilm based on mono-fractal features and multi-fractal formalism
  publication-title: IEEE Access
– volume: 44
  start-page: 6079
  year: 2019
  end-page: 6088
  ident: bib2
  article-title: New model for pore pressure prediction while drilling using artificial neural networks
  publication-title: Arabian J. Sci. Eng.
– volume: 1
  start-page: 31
  year: 2022
  end-page: 42
  ident: bib43
  article-title: A study on data scaling methods for machine learning
  publication-title: Int. J. Glob. Acad. Scient. Res.
– volume: 21
  start-page: 885
  year: 2024
  end-page: 902
  ident: bib54
  article-title: An adaptive physics-informed deep learning method for pore pressure prediction using seismic data
  publication-title: Pet. Sci.
– volume: 10
  start-page: 89
  year: 1995
  end-page: 95
  ident: bib7
  article-title: Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction
  publication-title: SPE Drill. Complet.
– volume: 43
  start-page: 571
  year: 2022
  end-page: 580
  ident: bib25
  article-title: Progress of theories and methods for prediction and detection of pore pressure in carbonate rock
  publication-title: Acta Pet. Sin.
– volume: 2
  start-page: 359
  year: 2023
  end-page: 370
  ident: bib53
  article-title: Coupling effects of temperature, confining pressure, and pore pressure on permeability and average pore size of Longmaxi shale
  publication-title: Deep Undergr. Sci. Eng.
– volume: vol. 1857
  year: 2000
  ident: bib12
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science
– volume: 13
  start-page: 188
  year: 2021
  end-page: 201
  ident: bib21
  article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 67
  start-page: 3211
  year: 2024
  end-page: 3228
  ident: bib26
  article-title: Physics-constrained distributed neural network model for 3D in-situ stress prediction
  publication-title: Chin. J. Geophys.
– volume: 4
  year: 2025
  ident: bib16
  article-title: Data-driven machine learning approaches for simultaneous prediction of peak particle velocity and frequency induced by rock blasting in mining
  publication-title: Rock Mech. Bull.
– volume: 42
  start-page: 3348
  year: 2022
  end-page: 3368
  ident: bib40
  article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends
  publication-title: Int. J. Coal Preparat. Utilizat.
– start-page: 413
  year: 2008
  end-page: 422
  ident: bib24
  article-title: Isolation forest
  publication-title: Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008)
– volume: 211
  year: 2022
  ident: bib28
  article-title: A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network
  publication-title: J. Petrol. Sci. Eng.
– volume: 12
  start-page: 4102
  year: 2017
  end-page: 4107
  ident: bib3
  article-title: Review of data preprocessing techniques in data mining
  publication-title: J. Eng. Appl. Sci.
– volume: 12
  start-page: 4102
  issue: 16
  year: 2017
  ident: 10.1016/j.petsci.2025.09.020_bib3
  article-title: Review of data preprocessing techniques in data mining
  publication-title: J. Eng. Appl. Sci.
– volume: 8
  start-page: 2233
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib51
  article-title: A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.01.012
– volume: 598
  year: 2021
  ident: 10.1016/j.petsci.2025.09.020_bib56
  article-title: Ensemble machine learning paradigms in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126266
– volume: 44
  start-page: 6079
  issue: 6
  year: 2019
  ident: 10.1016/j.petsci.2025.09.020_bib2
  article-title: New model for pore pressure prediction while drilling using artificial neural networks
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-018-3574-7
– year: 1982
  ident: 10.1016/j.petsci.2025.09.020_bib57
– volume: 10
  start-page: 4
  issue: 559–569
  year: 2006
  ident: 10.1016/j.petsci.2025.09.020_bib29
  article-title: Data mining: concepts and techniques
  publication-title: Morgan Kaufinann
– volume: 238
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib19
  article-title: A multilayer stacking method base on RFE-SHAP feature selection strategy for recognition of driver’s mental load and emotional state
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121729
– start-page: 65
  year: 2017
  ident: 10.1016/j.petsci.2025.09.020_bib20
  article-title: Application of random forest algorithm on feature subset selection and classification and regression
– volume: 200
  year: 2021
  ident: 10.1016/j.petsci.2025.09.020_bib32
  article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108182
– volume: 13
  start-page: 188
  issue: 1
  year: 2021
  ident: 10.1016/j.petsci.2025.09.020_bib21
  article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2020.05.011
– volume: 67
  start-page: 885
  issue: 3
  year: 2018
  ident: 10.1016/j.petsci.2025.09.020_bib49
  article-title: Ridge and lasso regression models for cross-version defect prediction
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2847353
– volume: 10
  start-page: 18
  issue: 1
  year: 2023
  ident: 10.1016/j.petsci.2025.09.020_bib18
  article-title: Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models
  publication-title: Int. J. Coal Sci. Technol.
  doi: 10.1007/s40789-023-00579-4
– volume: 21
  start-page: 885
  issue: 2
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib54
  article-title: An adaptive physics-informed deep learning method for pore pressure prediction using seismic data
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2023.11.006
– year: 2018
  ident: 10.1016/j.petsci.2025.09.020_bib36
– volume: 8
  start-page: 152
  issue: 5
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib27
  article-title: Horizontal in situ stresses prediction using a CNN-BiLSTM-attention hybrid neural network
  publication-title: Geomech. Geophys. Geo-Energy Geo-Resourc.
  doi: 10.1007/s40948-022-00467-2
– volume: 128
  start-page: 15
  year: 2015
  ident: 10.1016/j.petsci.2025.09.020_bib6
  article-title: Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2015.02.022
– start-page: 413
  year: 2008
  ident: 10.1016/j.petsci.2025.09.020_bib24
  article-title: Isolation forest
– volume: 4
  issue: 1
  year: 2025
  ident: 10.1016/j.petsci.2025.09.020_bib16
  article-title: Data-driven machine learning approaches for simultaneous prediction of peak particle velocity and frequency induced by rock blasting in mining
  publication-title: Rock Mech. Bull.
  doi: 10.1016/j.rockmb.2024.100166
– volume: 203
  year: 2021
  ident: 10.1016/j.petsci.2025.09.020_bib34
  article-title: Pore pressure evaluation of formation testing while drilling under supercharged conditions
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108689
– volume: 21
  start-page: 582
  issue: 1
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib33
  article-title: Interpretation and characterization of rate of penetration intelligent prediction model
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2023.10.011
– volume: 94
  start-page: 737
  year: 2019
  ident: 10.1016/j.petsci.2025.09.020_bib17
  article-title: Data standardization
  publication-title: NYUL Rev.
– volume: 353
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib47
  article-title: Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: a comparative analysis of Grad-CAM and SHAP
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122079
– volume: vol. 12
  year: 2011
  ident: 10.1016/j.petsci.2025.09.020_bib30
– volume: 129
  year: 2021
  ident: 10.1016/j.petsci.2025.09.020_bib44
  article-title: Machine learning models for predicting the residual value of heavy construction equipment: an evaluation of modified decision tree, LightGBM, and XGBoost regression
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2021.103827
– volume: 246
  year: 2025
  ident: 10.1016/j.petsci.2025.09.020_bib50
  article-title: Heterogeneous multi-task learning approach for rock strength prediction in real-time during drilling based on mud log data
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2024.213608
– year: 2021
  ident: 10.1016/j.petsci.2025.09.020_bib1
  article-title: Pore pressure estimation while drilling using machine learning
– volume: 108
  start-page: 50
  issue: 1–2
  year: 2011
  ident: 10.1016/j.petsci.2025.09.020_bib52
  article-title: Pore pressure prediction from well logs: methods, modifications, and new approaches
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2011.06.001
– volume: 2
  start-page: 359
  issue: 4
  year: 2023
  ident: 10.1016/j.petsci.2025.09.020_bib53
  article-title: Coupling effects of temperature, confining pressure, and pore pressure on permeability and average pore size of Longmaxi shale
  publication-title: Deep Undergr. Sci. Eng.
  doi: 10.1002/dug2.12047
– volume: 27
  start-page: 39
  issue: 1
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib35
  article-title: Application of artificial intelligence to predict time-dependent mud-weight windows in real time
  publication-title: SPE J.
  doi: 10.2118/206748-PA
– volume: 2
  start-page: 57
  issue: 1
  year: 1965
  ident: 10.1016/j.petsci.2025.09.020_bib45
  article-title: The concept of specific energy in rock drilling
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstracts
  doi: 10.1016/0148-9062(65)90022-7
– volume: 88
  start-page: 1273
  issue: 424
  year: 1993
  ident: 10.1016/j.petsci.2025.09.020_bib38
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476408
– volume: 27
  start-page: 1547
  issue: 2
  year: 2020
  ident: 10.1016/j.petsci.2025.09.020_bib9
  article-title: StackGenVis: alignment of data, algorithms, and models for stacking ensemble learning using performance metrics
  publication-title: IEEE Trans. Visual. Comput. Graph.
  doi: 10.1109/TVCG.2020.3030352
– volume: 67
  start-page: 1286
  issue: 4
  year: 2002
  ident: 10.1016/j.petsci.2025.09.020_bib41
  article-title: Predrill pore-pressure prediction using seismic data
  publication-title: Geophysics
  doi: 10.1190/1.1500391
– volume: 37
  start-page: 38
  issue: 1
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib4
  article-title: Risk-controlled wellbore stability criterion based on a machine-learning-assisted finite-element model
  publication-title: SPE Drill. Complet.
  doi: 10.2118/204101-PA
– volume: 30
  start-page: 339
  issue: 4
  year: 2012
  ident: 10.1016/j.petsci.2025.09.020_bib42
  article-title: Application of the dc-exponent method for abnormal pressure detection in Ahwaz oil field: a comparative study
  publication-title: Petrol. Sci. Technol.
  doi: 10.1080/10916466.2010.483439
– volume: 1
  start-page: 31
  issue: 1
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib43
  article-title: A study on data scaling methods for machine learning
  publication-title: Int. J. Glob. Acad. Scient. Res.
– volume: 42
  start-page: 3348
  issue: 11
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib40
  article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends
  publication-title: Int. J. Coal Preparat. Utilizat.
  doi: 10.1080/19392699.2021.1959324
– volume: 314
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib8
  article-title: Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118936
– volume: 34
  start-page: 763
  issue: 6
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib23
  article-title: Excess pore pressure behavior and evolution in deep coalbed methane reservoirs
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2024.06.010
– volume: 43
  start-page: 571
  issue: 4
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib25
  article-title: Progress of theories and methods for prediction and detection of pore pressure in carbonate rock
  publication-title: Acta Pet. Sin.
– volume: 67
  start-page: 3211
  issue: 8
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib26
  article-title: Physics-constrained distributed neural network model for 3D in-situ stress prediction
  publication-title: Chin. J. Geophys.
– volume: 30
  start-page: 524
  issue: 2
  year: 2025
  ident: 10.1016/j.petsci.2025.09.020_bib48
  article-title: A sequence learning approach for real-time and ahead-of-bit pore pressure prediction utilizing drilling data from the drilled section
  publication-title: SPE J.
  doi: 10.2118/223962-PA
– volume: 21
  start-page: 3326
  issue: 5
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib22
  article-title: A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2024.05.012
– volume: 12
  start-page: 108986
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib31
  article-title: New appliance signatures for nilm based on mono-fractal features and multi-fractal formalism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3440168
– volume: 7
  start-page: 31
  issue: 4
  year: 2015
  ident: 10.1016/j.petsci.2025.09.020_bib46
  article-title: An overview of pore pressure prediction using seismically-derived velocities
  publication-title: J. Geol. Min. Res.
  doi: 10.5897/JGMR15.0218
– year: 1971
  ident: 10.1016/j.petsci.2025.09.020_bib37
– year: 1975
  ident: 10.1016/j.petsci.2025.09.020_bib14
– volume: 56
  start-page: 535
  issue: 1
  year: 2023
  ident: 10.1016/j.petsci.2025.09.020_bib11
  article-title: Pore pressure prediction by empirical and machine learning methods using conventional and drilling logs in carbonate rocks
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-022-03089-y
– volume: 270
  year: 2021
  ident: 10.1016/j.petsci.2025.09.020_bib5
  article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121396
– volume: 10
  start-page: 1
  year: 2024
  ident: 10.1016/j.petsci.2025.09.020_bib55
  article-title: Application status and research progress of CO2 fracturing fluid in petroleum engineering: a brief review
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2023.12.001
– volume: 62
  start-page: 72
  issue: 1
  year: 2006
  ident: 10.1016/j.petsci.2025.09.020_bib15
  article-title: Scaling and assessment of data quality
  publication-title: Biolog. Crystallogr.
  doi: 10.1107/S0907444905036693
– volume: 10
  start-page: 89
  issue: 2
  year: 1995
  ident: 10.1016/j.petsci.2025.09.020_bib7
  article-title: Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction
  publication-title: SPE Drill. Complet.
  doi: 10.2118/27488-PA
– volume: 211
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib28
  article-title: A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110156
– volume: vol. 1857
  year: 2000
  ident: 10.1016/j.petsci.2025.09.020_bib12
  article-title: Ensemble methods in machine learning
– volume: 20
  start-page: 733
  issue: 2
  year: 2023
  ident: 10.1016/j.petsci.2025.09.020_bib13
  article-title: How to improve machine learning models for lithofacies identification by practical and novel ensemble strategy and principles
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2022.09.006
– volume: 75
  start-page: 644
  issue: 4
  year: 2010
  ident: 10.1016/j.petsci.2025.09.020_bib39
  article-title: Overview of overpressure in Bengal basin, India
  publication-title: J. Geol. Soc. India
  doi: 10.1007/s12594-010-0053-5
– volume: 210
  year: 2022
  ident: 10.1016/j.petsci.2025.09.020_bib10
  article-title: A hybrid partial least squares regression-based real time pore pressure estimation method for complex geological drilling process
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109771
SSID ssj0041762
Score 2.339937
Snippet The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with...
SourceID crossref
elsevier
SourceType Index Database
Publisher
SubjectTerms Machine learning
Mud log
Pore pressure
Real-time
Stacking ensemble approach
Title A stacking ensemble approach for pore pressure prediction in real-time during drilling based on mud log data
URI https://dx.doi.org/10.1016/j.petsci.2025.09.020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1995-8226
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0041762
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  issn: 1995-8226
  databaseCode: PCBAR
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/eaasdb
  omitProxy: false
  ssIdentifier: ssj0041762
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  issn: 1995-8226
  databaseCode: M7S
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com
  omitProxy: false
  ssIdentifier: ssj0041762
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1995-8226
  databaseCode: BENPR
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0041762
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  issn: 1995-8226
  databaseCode: PIMPY
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/publiccontent
  omitProxy: false
  ssIdentifier: ssj0041762
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt2kN7CH2S9IUOvS0Ka1u2rOOSpPTQhkJSSE9GkqXGYdcbNnHJqb-9M3p4FzaUttCLMV57bDTfer4Zz4OQ94UTUjqrmFCFY9y4mmnlNPyvqjxTQgsdmrh-Eicn9fm5_BKT2K_9OAHR9_Xtrbz6r6qGY6BsLJ39C3WPQuEA7IPSYQtqh-0fKX6G4QGDEfAJuKh2gaVRqXO4TyoExo3VUehmh522MynlESjknOG8-VS_2K660LUbzV2LnxYWQzvB8ZWxqm2ktjibazm3w2ISrepWTPpo2X9n31S0lT4MHuCienZ6sRzG5KBu8JZh48y1DMsOL2z8IUYr8nJMx4ohtK0yGv_WxTJxYCrVne_0EF64PAAvAp7_AKX61rT5dG3DxszCU5SFooDa4UfS6j55kItSYrbf55_HyUjzTPhZs-OdU1WlT_3bvtPdrGWDiZw9IbvRhaCzoPqn5J7tn5HHG40ln5P5jCYQ0AQCmkBAAQQUQUATCOgaBLTr6QgCGkBAEwioBwGFswAEFEBAEQQvyNcPx2eHH1mcq8EMELop43XbOiDaWlfSOj41rmwz08pallzVwlWOY4qcc3mtKgum1AphskIVShcOBwK9JDv9srd7hGZcSPB4bVHUFsVKU-RtmVnNuax0ofcJS-vWXIX2KU3KK7xswjo3uM7NVDawzvtEpMVtIlgDtWsADb-98tU_X_maPFoj9Q3ZuVkN9i15aH7cdNerdx42vwBhZ4Xn
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stacking+ensemble+approach+for+pore+pressure+prediction+in+real-time+during+drilling+based+on+mud+log+data&rft.jtitle=Petroleum+science&rft.au=Zhang%2C+Dong-Yang&rft.au=Ma%2C+Tian-Shou&rft.au=Liu%2C+Yang&rft.au=Zhang%2C+De-Cheng&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=1995-8226&rft_id=info:doi/10.1016%2Fj.petsci.2025.09.020&rft.externalDocID=S1995822625003516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-8226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-8226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-8226&client=summon