A stacking ensemble approach for pore pressure prediction in real-time during drilling based on mud log data
The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with drilling operations. In order to surmount the limitations of empirical methods and to reduce reliance on logging-while-drilling data, this study pro...
Gespeichert in:
| Veröffentlicht in: | Petroleum science |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2025
|
| Schlagworte: | |
| ISSN: | 1995-8226 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with drilling operations. In order to surmount the limitations of empirical methods and to reduce reliance on logging-while-drilling data, this study proposed a stacking ensemble approach that utilized only conventional mud log data. The workflow involves the preliminary processing of data using isolation forest and wavelet thresholding techniques to effectively eliminate outliers and noise. The Eaton index was estimated using a Bayesian inversion algorithm, and pore pressure was estimated by integrating the dc exponent and Eaton method. A feature selection strategy combining data distribution characteristics and regression-based importance ranking was used to optimize the input parameters. Subsequently, a stacking approach was developed for predicting pore pressure, and the corresponding base learner, meta learner, and hyperparameters were optimized. Finally, the validity of the optimized model was substantiated through field data from three test wells (X1, X5, X3) under different drilling scenarios. The results indicated that the global optimal Eaton index of the block was 0.2449, the maximum percentage error of pore pressure estimation was 3.66%, and the corresponding average error was 1.59% compared to the wireline formation test data. The optimal combination of input features was determined to be R-ROP, WOB, TG, PT, MW, PFI, TVD, H, BR, BT, and SPP. The optimal basic learners were identified as BPNN, CNN, LSTM, and LightGBM, while the optimal meta learners were XGBoost. Prediction accuracy is improved when offset wells are densely distributed, spatially balanced, and proximal to the target well; conversely, sparse or distant offset wells result in reduced prediction performance. The mean absolute percentage errors for test offset well X1, X5, and X3 were 0.4353%, 0.4646%, and 0.6856%, respectively, with the corresponding R2 values of 0.9362, 0.9078, and 0.8950, respectively. Consequently, this approach has the capacity to accurately and in real-time predict pore pressure using solely conventional mud log data. This capability enables timely adjustments to drilling parameters, thereby enhancing operational efficiency and mitigating drilling risks. |
|---|---|
| AbstractList | The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with drilling operations. In order to surmount the limitations of empirical methods and to reduce reliance on logging-while-drilling data, this study proposed a stacking ensemble approach that utilized only conventional mud log data. The workflow involves the preliminary processing of data using isolation forest and wavelet thresholding techniques to effectively eliminate outliers and noise. The Eaton index was estimated using a Bayesian inversion algorithm, and pore pressure was estimated by integrating the dc exponent and Eaton method. A feature selection strategy combining data distribution characteristics and regression-based importance ranking was used to optimize the input parameters. Subsequently, a stacking approach was developed for predicting pore pressure, and the corresponding base learner, meta learner, and hyperparameters were optimized. Finally, the validity of the optimized model was substantiated through field data from three test wells (X1, X5, X3) under different drilling scenarios. The results indicated that the global optimal Eaton index of the block was 0.2449, the maximum percentage error of pore pressure estimation was 3.66%, and the corresponding average error was 1.59% compared to the wireline formation test data. The optimal combination of input features was determined to be R-ROP, WOB, TG, PT, MW, PFI, TVD, H, BR, BT, and SPP. The optimal basic learners were identified as BPNN, CNN, LSTM, and LightGBM, while the optimal meta learners were XGBoost. Prediction accuracy is improved when offset wells are densely distributed, spatially balanced, and proximal to the target well; conversely, sparse or distant offset wells result in reduced prediction performance. The mean absolute percentage errors for test offset well X1, X5, and X3 were 0.4353%, 0.4646%, and 0.6856%, respectively, with the corresponding R2 values of 0.9362, 0.9078, and 0.8950, respectively. Consequently, this approach has the capacity to accurately and in real-time predict pore pressure using solely conventional mud log data. This capability enables timely adjustments to drilling parameters, thereby enhancing operational efficiency and mitigating drilling risks. |
| Author | Liu, Yang Zhang, De-Cheng Zhang, Dong-Yang Ma, Tian-Shou |
| Author_xml | – sequence: 1 givenname: Dong-Yang surname: Zhang fullname: Zhang, Dong-Yang organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Sichuan, China – sequence: 2 givenname: Tian-Shou surname: Ma fullname: Ma, Tian-Shou email: matianshou@126.com, matianshou@swpu.edu.cn organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Sichuan, China – sequence: 3 givenname: Yang surname: Liu fullname: Liu, Yang organization: School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, China – sequence: 4 givenname: De-Cheng surname: Zhang fullname: Zhang, De-Cheng organization: School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China |
| BookMark | eNp9kM1OwzAQhH0oEi3wBhz8Agm28-sLUlXxJ1XiAmdrY6_BxYkjO0Xi7UkUzpx2pJ0Z7X47shnCgITccpZzxuu7Uz7ilLTLBRNVzmTOBNuQLZeyyloh6kuyS-nEWMmbWmyJ39M0gf5ywwfFIWHfeaQwjjGA_qQ2RDqGiHSMmNJ5FcbpyYWBuoFGBJ9NrkdqznGpMNF5v4gOEho6u_qzoT7MG5jgmlxY8Alv_uYVeX98eDs8Z8fXp5fD_phpwVuWla0xtuK862qJtmTaVoZrI1tZldA2trYldhqsFS3UyMsam0bzAgroCltVvLgi5dqrY0gpolVjdD3EH8WZWiipk1opqYWSYlLNlObY_RrD-bZvh1HNDhz0_HFEPSkT3P8Fv6oUeOM |
| Cites_doi | 10.1016/j.egyr.2022.01.012 10.1016/j.jhydrol.2021.126266 10.1007/s13369-018-3574-7 10.1016/j.eswa.2023.121729 10.1016/j.petrol.2020.108182 10.1016/j.jrmge.2020.05.011 10.1109/TR.2018.2847353 10.1007/s40789-023-00579-4 10.1016/j.petsci.2023.11.006 10.1007/s40948-022-00467-2 10.1016/j.petrol.2015.02.022 10.1016/j.rockmb.2024.100166 10.1016/j.petrol.2021.108689 10.1016/j.petsci.2023.10.011 10.1016/j.apenergy.2023.122079 10.1016/j.autcon.2021.103827 10.1016/j.geoen.2024.213608 10.1016/j.earscirev.2011.06.001 10.1002/dug2.12047 10.2118/206748-PA 10.1016/0148-9062(65)90022-7 10.1080/01621459.1993.10476408 10.1109/TVCG.2020.3030352 10.1190/1.1500391 10.2118/204101-PA 10.1080/10916466.2010.483439 10.1080/19392699.2021.1959324 10.1016/j.apenergy.2022.118936 10.1016/j.ijmst.2024.06.010 10.2118/223962-PA 10.1016/j.petsci.2024.05.012 10.1109/ACCESS.2024.3440168 10.5897/JGMR15.0218 10.1007/s00603-022-03089-y 10.1016/j.conbuildmat.2020.121396 10.1016/j.petlm.2023.12.001 10.1107/S0907444905036693 10.2118/27488-PA 10.1016/j.petrol.2022.110156 10.1016/j.petsci.2022.09.006 10.1007/s12594-010-0053-5 10.1016/j.petrol.2021.109771 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.petsci.2025.09.020 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_petsci_2025_09_020 S1995822625003516 |
| GroupedDBID | -SB -S~ -Y2 .86 .VR 06D 0R~ 0VY 123 29O 2JY 2VQ 2~H 30V 4.4 408 40D 5VR 5VS 67M 6I. 6NX 8FE 8FG 8FH 92H 92I 95. 95~ AAFTH AAFWJ AAIAL AAKKN AALRI AARHV AAWCG AAXUO AAYWO ABEEZ ABFSG ABJCF ABMNI ACACY ACBXY ACGFS ACIWK ACOMO ACREN ACSTC ACULB ACVFH ADCNI ADCSY ADKPE ADRFC ADVLN AEGNC AEGXH AENEX AEUPX AEUYN AEZWR AFBBN AFFHD AFGCZ AFGXO AFHIU AFKRA AFLOW AFPKN AFPUW AFUIB AFWTZ AGGLG AGJBK AGWIL AHBYD AHSBF AHWEU AHYZX AIGII AITUG AIXLP AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMTXH BA0 BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CS3 CW9 DU5 EBS EJD FDB GQ7 GROUPED_DOAJ H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IPNFZ IXC I~X I~Z JBSCW KOV L6V LK5 M41 M4Y M7R M7S MA- M~E NU0 O9- OK1 PCBAR PF0 PHGZM PHGZT PIMPY PQGLB PTHSS Q-- QOS R9I RIG ROL RPX S1Z S27 S3B SCL SDH SEV SHX SOJ T13 TCJ TGT TSV TUC U1G U2A U5L VC2 WK8 ~A9 AAYXX CITATION |
| ID | FETCH-LOGICAL-c2180-48ddf511bb69ef40cf5d1cd98954a87f6f4ebcaff28a6e146e77c13a3ab3f5513 |
| ISSN | 1995-8226 |
| IngestDate | Thu Nov 27 01:05:22 EST 2025 Wed Dec 10 14:28:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stacking ensemble approach Mud log Pore pressure Real-time Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2180-48ddf511bb69ef40cf5d1cd98954a87f6f4ebcaff28a6e146e77c13a3ab3f5513 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.petsci.2025.09.020 |
| ParticipantIDs | crossref_primary_10_1016_j_petsci_2025_09_020 elsevier_sciencedirect_doi_10_1016_j_petsci_2025_09_020 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-9-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-9-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Petroleum science |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ma, Xiang, Shi (bib27) 2022; 8 Zhang, Li, Tan (bib53) 2023; 2 Chen, Cao, Gan (bib10) 2022; 210 Jaiswal, Samikannu (bib20) 2017 Zhang, Davoodi, Band (bib51) 2022; 8 Lu, Wang, Zhang (bib25) 2022; 43 Liu, Ting, Zhou (bib24) 2008 Gal, Rubinfeld (bib17) 2019; 94 Rashidi, Asadi (bib36) 2018 Yang, Feng, Shang (bib48) 2025; 30 Alasadi, Bhaya (bib3) 2017; 12 Yang, Wen (bib49) 2018; 67 Rzychoń, Żogała, Rog (bib40) 2022; 42 Dietterich (bib12) 2000; vol. 1857 Delavar, Ramezanzadeh (bib11) 2023; 56 Zounemat-Kermani, Batelaan, Fadaee (bib56) 2021; 598 Zhang (bib52) 2011; 108 Mitchell, Miska (bib30) 2011; vol. 12 Phan, Liu, AlTammar (bib35) 2022; 27 Zhang, Ma, Liu (bib50) 2025; 246 Rehm, McClendon (bib37) 1971 Ahmed Abdelaal, Salaheldin Elkatatny, Abdulazeez Abdulraheem (bib1) 2021 Zhao, Wu, Pu (bib55) 2024; 10 Azadpour, Manaman, Kadkhodaie-Ilkhchi (bib6) 2015; 128 Huang, Peng, Hu (bib19) 2024; 238 Rousseeuw, Croux (bib38) 1993; 88 Otchere, Ganat, Gholami (bib32) 2021; 200 Alsini, Almakrab, Ibrahim (bib5) 2021; 270 Dong, Sun, Xu (bib13) 2023; 20 Roy, Ray, Biswas (bib39) 2010; 75 Sayers, Johnson, Denyer (bib41) 2002; 67 Ma, Xiang, Gui (bib26) 2024; 67 Evans (bib15) 2006; 62 Chatzimparmpas, Martins, Kucher (bib9) 2020; 27 Bowers (bib7) 1995; 10 Kardani, Zhou, Nazem (bib21) 2021; 13 AlBahrani, Morita (bib4) 2022; 37 Huang, Xiong, Chen (bib18) 2023; 10 Eaton (bib14) 1975 Mughees, Kamran, Mughees (bib31) 2024; 12 Sharma (bib43) 2022; 1 Shehadeh, Alshboul, Al Mamlook (bib44) 2021; 129 Carneiro, Rocha, Carvalho (bib8) 2022; 314 Liang, Liu, Kang (bib22) 2024; 21 Peng, Ma, Chen (bib34) 2021; 203 Fillippone (bib57) 1982 Fissha, Ragam, Ikeda (bib16) 2025; 4 Shajari, Najibi (bib42) 2012; 30 Ugwu (bib46) 2015; 7 Ahmed, Elkatatny, Ali (bib2) 2019; 44 Van Zyl, Ye, Naidoo (bib47) 2024; 353 Pei, Song, Wang (bib33) 2024; 21 Mining (bib29) 2006; 10 Zhang, Lu, Jin (bib54) 2024; 21 Liu, Yang, Qin (bib23) 2024; 34 Teale (bib45) 1965; 2 Matinkia, Amraeiniya, Behboud (bib28) 2022; 211 Bowers (10.1016/j.petsci.2025.09.020_bib7) 1995; 10 Dietterich (10.1016/j.petsci.2025.09.020_bib12) 2000; vol. 1857 Ahmed Abdelaal (10.1016/j.petsci.2025.09.020_bib1) 2021 Gal (10.1016/j.petsci.2025.09.020_bib17) 2019; 94 Alsini (10.1016/j.petsci.2025.09.020_bib5) 2021; 270 Rousseeuw (10.1016/j.petsci.2025.09.020_bib38) 1993; 88 Fillippone (10.1016/j.petsci.2025.09.020_bib57) 1982 Dong (10.1016/j.petsci.2025.09.020_bib13) 2023; 20 AlBahrani (10.1016/j.petsci.2025.09.020_bib4) 2022; 37 Teale (10.1016/j.petsci.2025.09.020_bib45) 1965; 2 Rzychoń (10.1016/j.petsci.2025.09.020_bib40) 2022; 42 Chen (10.1016/j.petsci.2025.09.020_bib10) 2022; 210 Zhang (10.1016/j.petsci.2025.09.020_bib51) 2022; 8 Van Zyl (10.1016/j.petsci.2025.09.020_bib47) 2024; 353 Alasadi (10.1016/j.petsci.2025.09.020_bib3) 2017; 12 Yang (10.1016/j.petsci.2025.09.020_bib48) 2025; 30 Ugwu (10.1016/j.petsci.2025.09.020_bib46) 2015; 7 Jaiswal (10.1016/j.petsci.2025.09.020_bib20) 2017 Otchere (10.1016/j.petsci.2025.09.020_bib32) 2021; 200 Evans (10.1016/j.petsci.2025.09.020_bib15) 2006; 62 Zhao (10.1016/j.petsci.2025.09.020_bib55) 2024; 10 Sharma (10.1016/j.petsci.2025.09.020_bib43) 2022; 1 Rehm (10.1016/j.petsci.2025.09.020_bib37) 1971 Pei (10.1016/j.petsci.2025.09.020_bib33) 2024; 21 Peng (10.1016/j.petsci.2025.09.020_bib34) 2021; 203 Carneiro (10.1016/j.petsci.2025.09.020_bib8) 2022; 314 Ma (10.1016/j.petsci.2025.09.020_bib27) 2022; 8 Sayers (10.1016/j.petsci.2025.09.020_bib41) 2002; 67 Liu (10.1016/j.petsci.2025.09.020_bib24) 2008 Shehadeh (10.1016/j.petsci.2025.09.020_bib44) 2021; 129 Matinkia (10.1016/j.petsci.2025.09.020_bib28) 2022; 211 Zhang (10.1016/j.petsci.2025.09.020_bib50) 2025; 246 Eaton (10.1016/j.petsci.2025.09.020_bib14) 1975 Azadpour (10.1016/j.petsci.2025.09.020_bib6) 2015; 128 Zhang (10.1016/j.petsci.2025.09.020_bib52) 2011; 108 Fissha (10.1016/j.petsci.2025.09.020_bib16) 2025; 4 Phan (10.1016/j.petsci.2025.09.020_bib35) 2022; 27 Zhang (10.1016/j.petsci.2025.09.020_bib54) 2024; 21 Zhang (10.1016/j.petsci.2025.09.020_bib53) 2023; 2 Liang (10.1016/j.petsci.2025.09.020_bib22) 2024; 21 Lu (10.1016/j.petsci.2025.09.020_bib25) 2022; 43 Delavar (10.1016/j.petsci.2025.09.020_bib11) 2023; 56 Kardani (10.1016/j.petsci.2025.09.020_bib21) 2021; 13 Mining (10.1016/j.petsci.2025.09.020_bib29) 2006; 10 Mitchell (10.1016/j.petsci.2025.09.020_bib30) 2011; vol. 12 Huang (10.1016/j.petsci.2025.09.020_bib19) 2024; 238 Roy (10.1016/j.petsci.2025.09.020_bib39) 2010; 75 Zounemat-Kermani (10.1016/j.petsci.2025.09.020_bib56) 2021; 598 Shajari (10.1016/j.petsci.2025.09.020_bib42) 2012; 30 Chatzimparmpas (10.1016/j.petsci.2025.09.020_bib9) 2020; 27 Liu (10.1016/j.petsci.2025.09.020_bib23) 2024; 34 Yang (10.1016/j.petsci.2025.09.020_bib49) 2018; 67 Ma (10.1016/j.petsci.2025.09.020_bib26) 2024; 67 Huang (10.1016/j.petsci.2025.09.020_bib18) 2023; 10 Mughees (10.1016/j.petsci.2025.09.020_bib31) 2024; 12 Ahmed (10.1016/j.petsci.2025.09.020_bib2) 2019; 44 Rashidi (10.1016/j.petsci.2025.09.020_bib36) 2018 |
| References_xml | – volume: 10 start-page: 18 year: 2023 ident: bib18 article-title: Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models publication-title: Int. J. Coal Sci. Technol. – volume: 21 start-page: 582 year: 2024 end-page: 596 ident: bib33 article-title: Interpretation and characterization of rate of penetration intelligent prediction model publication-title: Pet. Sci. – volume: 20 start-page: 733 year: 2023 end-page: 752 ident: bib13 article-title: How to improve machine learning models for lithofacies identification by practical and novel ensemble strategy and principles publication-title: Pet. Sci. – volume: 238 year: 2024 ident: bib19 article-title: A multilayer stacking method base on RFE-SHAP feature selection strategy for recognition of driver’s mental load and emotional state publication-title: Expert Syst. Appl. – volume: 353 year: 2024 ident: bib47 article-title: Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: a comparative analysis of Grad-CAM and SHAP publication-title: Appl. Energy – volume: 128 start-page: 15 year: 2015 end-page: 23 ident: bib6 article-title: Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran publication-title: J. Petrol. Sci. Eng. – year: 1975 ident: bib14 article-title: The Equation for Geopressure Prediction from Well Logs – volume: 94 start-page: 737 year: 2019 ident: bib17 article-title: Data standardization publication-title: NYUL Rev. – volume: 129 year: 2021 ident: bib44 article-title: Machine learning models for predicting the residual value of heavy construction equipment: an evaluation of modified decision tree, LightGBM, and XGBoost regression publication-title: Autom. ConStruct. – volume: 27 start-page: 1547 year: 2020 end-page: 1557 ident: bib9 article-title: StackGenVis: alignment of data, algorithms, and models for stacking ensemble learning using performance metrics publication-title: IEEE Trans. Visual. Comput. Graph. – year: 2021 ident: bib1 article-title: Pore pressure estimation while drilling using machine learning publication-title: ARMA/DGS/SEG International Geomechanics Symposium, Virtual – year: 1971 ident: bib37 article-title: Measurement of Formation Pressure from Drilling Data – start-page: 65 year: 2017 end-page: 68 ident: bib20 article-title: Application of random forest algorithm on feature subset selection and classification and regression publication-title: 2017 World Congress on Computing and Communication Technologies (WCCCT) – volume: 34 start-page: 763 year: 2024 end-page: 781 ident: bib23 article-title: Excess pore pressure behavior and evolution in deep coalbed methane reservoirs publication-title: Int. J. Min. Sci. Technol. – year: 1982 ident: bib57 publication-title: Estimation of formation parameters and the prediction of overpressures from seismic data. SEG Technical Program Expanded Abstracts – volume: 10 start-page: 1 year: 2024 end-page: 10 ident: bib55 article-title: Application status and research progress of CO2 fracturing fluid in petroleum engineering: a brief review publication-title: Petroleum – volume: 56 start-page: 535 year: 2023 end-page: 564 ident: bib11 article-title: Pore pressure prediction by empirical and machine learning methods using conventional and drilling logs in carbonate rocks publication-title: Rock Mech. Rock Eng. – volume: 203 year: 2021 ident: bib34 article-title: Pore pressure evaluation of formation testing while drilling under supercharged conditions publication-title: J. Petrol. Sci. Eng. – volume: vol. 12 year: 2011 ident: bib30 publication-title: Fundamentals of Drilling Engineering. SPE Text Book Series – volume: 7 start-page: 31 year: 2015 end-page: 40 ident: bib46 article-title: An overview of pore pressure prediction using seismically-derived velocities publication-title: J. Geol. Min. Res. – volume: 10 start-page: 4 year: 2006 ident: bib29 article-title: Data mining: concepts and techniques publication-title: Morgan Kaufinann – volume: 8 start-page: 2233 year: 2022 end-page: 2247 ident: bib51 article-title: A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques publication-title: Energy Rep. – volume: 8 start-page: 152 year: 2022 ident: bib27 article-title: Horizontal publication-title: Geomech. Geophys. Geo-Energy Geo-Resourc. – volume: 2 start-page: 57 year: 1965 end-page: 73 ident: bib45 article-title: The concept of specific energy in rock drilling publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstracts – volume: 246 year: 2025 ident: bib50 article-title: Heterogeneous multi-task learning approach for rock strength prediction in real-time during drilling based on mud log data publication-title: Geoenergy Sci. Eng. – volume: 67 start-page: 1286 year: 2002 end-page: 1292 ident: bib41 article-title: Predrill pore-pressure prediction using seismic data publication-title: Geophysics – volume: 200 year: 2021 ident: bib32 article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models publication-title: J. Petrol. Sci. Eng. – volume: 210 year: 2022 ident: bib10 article-title: A hybrid partial least squares regression-based real time pore pressure estimation method for complex geological drilling process publication-title: J. Petrol. Sci. Eng. – volume: 37 start-page: 38 year: 2022 end-page: 66 ident: bib4 article-title: Risk-controlled wellbore stability criterion based on a machine-learning-assisted finite-element model publication-title: SPE Drill. Complet. – volume: 21 start-page: 3326 year: 2024 end-page: 3339 ident: bib22 article-title: A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model publication-title: Pet. Sci. – volume: 30 start-page: 339 year: 2012 end-page: 349 ident: bib42 article-title: Application of the dc-exponent method for abnormal pressure detection in Ahwaz oil field: a comparative study publication-title: Petrol. Sci. Technol. – volume: 75 start-page: 644 year: 2010 end-page: 660 ident: bib39 article-title: Overview of overpressure in Bengal basin, India publication-title: J. Geol. Soc. India – volume: 108 start-page: 50 year: 2011 end-page: 63 ident: bib52 article-title: Pore pressure prediction from well logs: methods, modifications, and new approaches publication-title: Earth Sci. Rev. – volume: 270 year: 2021 ident: bib5 article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor publication-title: Constr. Build. Mater. – volume: 598 year: 2021 ident: bib56 article-title: Ensemble machine learning paradigms in hydrology: a review publication-title: J. Hydrol. – volume: 67 start-page: 885 year: 2018 end-page: 896 ident: bib49 article-title: Ridge and lasso regression models for cross-version defect prediction publication-title: IEEE Trans. Reliab. – volume: 30 start-page: 524 year: 2025 end-page: 543 ident: bib48 article-title: A sequence learning approach for real-time and ahead-of-bit pore pressure prediction utilizing drilling data from the drilled section publication-title: SPE J. – volume: 88 start-page: 1273 year: 1993 end-page: 1283 ident: bib38 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. – volume: 314 year: 2022 ident: bib8 article-title: Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain publication-title: Appl. Energy – volume: 27 start-page: 39 year: 2022 end-page: 59 ident: bib35 article-title: Application of artificial intelligence to predict time-dependent mud-weight windows in real time publication-title: SPE J. – volume: 62 start-page: 72 year: 2006 end-page: 82 ident: bib15 article-title: Scaling and assessment of data quality publication-title: Biolog. Crystallogr. – year: 2018 ident: bib36 article-title: An Artificial Intelligence Approach in Estimation of Formation Pore Pressure by Critical Drilling Data. ARMA US Rock Mechanics/Geomechanics Symposium – volume: 12 start-page: 108986 year: 2024 end-page: 109000 ident: bib31 article-title: New appliance signatures for nilm based on mono-fractal features and multi-fractal formalism publication-title: IEEE Access – volume: 44 start-page: 6079 year: 2019 end-page: 6088 ident: bib2 article-title: New model for pore pressure prediction while drilling using artificial neural networks publication-title: Arabian J. Sci. Eng. – volume: 1 start-page: 31 year: 2022 end-page: 42 ident: bib43 article-title: A study on data scaling methods for machine learning publication-title: Int. J. Glob. Acad. Scient. Res. – volume: 21 start-page: 885 year: 2024 end-page: 902 ident: bib54 article-title: An adaptive physics-informed deep learning method for pore pressure prediction using seismic data publication-title: Pet. Sci. – volume: 10 start-page: 89 year: 1995 end-page: 95 ident: bib7 article-title: Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction publication-title: SPE Drill. Complet. – volume: 43 start-page: 571 year: 2022 end-page: 580 ident: bib25 article-title: Progress of theories and methods for prediction and detection of pore pressure in carbonate rock publication-title: Acta Pet. Sin. – volume: 2 start-page: 359 year: 2023 end-page: 370 ident: bib53 article-title: Coupling effects of temperature, confining pressure, and pore pressure on permeability and average pore size of Longmaxi shale publication-title: Deep Undergr. Sci. Eng. – volume: vol. 1857 year: 2000 ident: bib12 article-title: Ensemble methods in machine learning publication-title: Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science – volume: 13 start-page: 188 year: 2021 end-page: 201 ident: bib21 article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data publication-title: J. Rock Mech. Geotech. Eng. – volume: 67 start-page: 3211 year: 2024 end-page: 3228 ident: bib26 article-title: Physics-constrained distributed neural network model for 3D in-situ stress prediction publication-title: Chin. J. Geophys. – volume: 4 year: 2025 ident: bib16 article-title: Data-driven machine learning approaches for simultaneous prediction of peak particle velocity and frequency induced by rock blasting in mining publication-title: Rock Mech. Bull. – volume: 42 start-page: 3348 year: 2022 end-page: 3368 ident: bib40 article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends publication-title: Int. J. Coal Preparat. Utilizat. – start-page: 413 year: 2008 end-page: 422 ident: bib24 article-title: Isolation forest publication-title: Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008) – volume: 211 year: 2022 ident: bib28 article-title: A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network publication-title: J. Petrol. Sci. Eng. – volume: 12 start-page: 4102 year: 2017 end-page: 4107 ident: bib3 article-title: Review of data preprocessing techniques in data mining publication-title: J. Eng. Appl. Sci. – volume: 12 start-page: 4102 issue: 16 year: 2017 ident: 10.1016/j.petsci.2025.09.020_bib3 article-title: Review of data preprocessing techniques in data mining publication-title: J. Eng. Appl. Sci. – volume: 8 start-page: 2233 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib51 article-title: A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.01.012 – volume: 598 year: 2021 ident: 10.1016/j.petsci.2025.09.020_bib56 article-title: Ensemble machine learning paradigms in hydrology: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126266 – volume: 44 start-page: 6079 issue: 6 year: 2019 ident: 10.1016/j.petsci.2025.09.020_bib2 article-title: New model for pore pressure prediction while drilling using artificial neural networks publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-018-3574-7 – year: 1982 ident: 10.1016/j.petsci.2025.09.020_bib57 – volume: 10 start-page: 4 issue: 559–569 year: 2006 ident: 10.1016/j.petsci.2025.09.020_bib29 article-title: Data mining: concepts and techniques publication-title: Morgan Kaufinann – volume: 238 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib19 article-title: A multilayer stacking method base on RFE-SHAP feature selection strategy for recognition of driver’s mental load and emotional state publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121729 – start-page: 65 year: 2017 ident: 10.1016/j.petsci.2025.09.020_bib20 article-title: Application of random forest algorithm on feature subset selection and classification and regression – volume: 200 year: 2021 ident: 10.1016/j.petsci.2025.09.020_bib32 article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2020.108182 – volume: 13 start-page: 188 issue: 1 year: 2021 ident: 10.1016/j.petsci.2025.09.020_bib21 article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2020.05.011 – volume: 67 start-page: 885 issue: 3 year: 2018 ident: 10.1016/j.petsci.2025.09.020_bib49 article-title: Ridge and lasso regression models for cross-version defect prediction publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2847353 – volume: 10 start-page: 18 issue: 1 year: 2023 ident: 10.1016/j.petsci.2025.09.020_bib18 article-title: Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-023-00579-4 – volume: 21 start-page: 885 issue: 2 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib54 article-title: An adaptive physics-informed deep learning method for pore pressure prediction using seismic data publication-title: Pet. Sci. doi: 10.1016/j.petsci.2023.11.006 – year: 2018 ident: 10.1016/j.petsci.2025.09.020_bib36 – volume: 8 start-page: 152 issue: 5 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib27 article-title: Horizontal in situ stresses prediction using a CNN-BiLSTM-attention hybrid neural network publication-title: Geomech. Geophys. Geo-Energy Geo-Resourc. doi: 10.1007/s40948-022-00467-2 – volume: 128 start-page: 15 year: 2015 ident: 10.1016/j.petsci.2025.09.020_bib6 article-title: Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2015.02.022 – start-page: 413 year: 2008 ident: 10.1016/j.petsci.2025.09.020_bib24 article-title: Isolation forest – volume: 4 issue: 1 year: 2025 ident: 10.1016/j.petsci.2025.09.020_bib16 article-title: Data-driven machine learning approaches for simultaneous prediction of peak particle velocity and frequency induced by rock blasting in mining publication-title: Rock Mech. Bull. doi: 10.1016/j.rockmb.2024.100166 – volume: 203 year: 2021 ident: 10.1016/j.petsci.2025.09.020_bib34 article-title: Pore pressure evaluation of formation testing while drilling under supercharged conditions publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108689 – volume: 21 start-page: 582 issue: 1 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib33 article-title: Interpretation and characterization of rate of penetration intelligent prediction model publication-title: Pet. Sci. doi: 10.1016/j.petsci.2023.10.011 – volume: 94 start-page: 737 year: 2019 ident: 10.1016/j.petsci.2025.09.020_bib17 article-title: Data standardization publication-title: NYUL Rev. – volume: 353 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib47 article-title: Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: a comparative analysis of Grad-CAM and SHAP publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122079 – volume: vol. 12 year: 2011 ident: 10.1016/j.petsci.2025.09.020_bib30 – volume: 129 year: 2021 ident: 10.1016/j.petsci.2025.09.020_bib44 article-title: Machine learning models for predicting the residual value of heavy construction equipment: an evaluation of modified decision tree, LightGBM, and XGBoost regression publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2021.103827 – volume: 246 year: 2025 ident: 10.1016/j.petsci.2025.09.020_bib50 article-title: Heterogeneous multi-task learning approach for rock strength prediction in real-time during drilling based on mud log data publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2024.213608 – year: 2021 ident: 10.1016/j.petsci.2025.09.020_bib1 article-title: Pore pressure estimation while drilling using machine learning – volume: 108 start-page: 50 issue: 1–2 year: 2011 ident: 10.1016/j.petsci.2025.09.020_bib52 article-title: Pore pressure prediction from well logs: methods, modifications, and new approaches publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2011.06.001 – volume: 2 start-page: 359 issue: 4 year: 2023 ident: 10.1016/j.petsci.2025.09.020_bib53 article-title: Coupling effects of temperature, confining pressure, and pore pressure on permeability and average pore size of Longmaxi shale publication-title: Deep Undergr. Sci. Eng. doi: 10.1002/dug2.12047 – volume: 27 start-page: 39 issue: 1 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib35 article-title: Application of artificial intelligence to predict time-dependent mud-weight windows in real time publication-title: SPE J. doi: 10.2118/206748-PA – volume: 2 start-page: 57 issue: 1 year: 1965 ident: 10.1016/j.petsci.2025.09.020_bib45 article-title: The concept of specific energy in rock drilling publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstracts doi: 10.1016/0148-9062(65)90022-7 – volume: 88 start-page: 1273 issue: 424 year: 1993 ident: 10.1016/j.petsci.2025.09.020_bib38 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476408 – volume: 27 start-page: 1547 issue: 2 year: 2020 ident: 10.1016/j.petsci.2025.09.020_bib9 article-title: StackGenVis: alignment of data, algorithms, and models for stacking ensemble learning using performance metrics publication-title: IEEE Trans. Visual. Comput. Graph. doi: 10.1109/TVCG.2020.3030352 – volume: 67 start-page: 1286 issue: 4 year: 2002 ident: 10.1016/j.petsci.2025.09.020_bib41 article-title: Predrill pore-pressure prediction using seismic data publication-title: Geophysics doi: 10.1190/1.1500391 – volume: 37 start-page: 38 issue: 1 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib4 article-title: Risk-controlled wellbore stability criterion based on a machine-learning-assisted finite-element model publication-title: SPE Drill. Complet. doi: 10.2118/204101-PA – volume: 30 start-page: 339 issue: 4 year: 2012 ident: 10.1016/j.petsci.2025.09.020_bib42 article-title: Application of the dc-exponent method for abnormal pressure detection in Ahwaz oil field: a comparative study publication-title: Petrol. Sci. Technol. doi: 10.1080/10916466.2010.483439 – volume: 1 start-page: 31 issue: 1 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib43 article-title: A study on data scaling methods for machine learning publication-title: Int. J. Glob. Acad. Scient. Res. – volume: 42 start-page: 3348 issue: 11 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib40 article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends publication-title: Int. J. Coal Preparat. Utilizat. doi: 10.1080/19392699.2021.1959324 – volume: 314 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib8 article-title: Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118936 – volume: 34 start-page: 763 issue: 6 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib23 article-title: Excess pore pressure behavior and evolution in deep coalbed methane reservoirs publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2024.06.010 – volume: 43 start-page: 571 issue: 4 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib25 article-title: Progress of theories and methods for prediction and detection of pore pressure in carbonate rock publication-title: Acta Pet. Sin. – volume: 67 start-page: 3211 issue: 8 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib26 article-title: Physics-constrained distributed neural network model for 3D in-situ stress prediction publication-title: Chin. J. Geophys. – volume: 30 start-page: 524 issue: 2 year: 2025 ident: 10.1016/j.petsci.2025.09.020_bib48 article-title: A sequence learning approach for real-time and ahead-of-bit pore pressure prediction utilizing drilling data from the drilled section publication-title: SPE J. doi: 10.2118/223962-PA – volume: 21 start-page: 3326 issue: 5 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib22 article-title: A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model publication-title: Pet. Sci. doi: 10.1016/j.petsci.2024.05.012 – volume: 12 start-page: 108986 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib31 article-title: New appliance signatures for nilm based on mono-fractal features and multi-fractal formalism publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3440168 – volume: 7 start-page: 31 issue: 4 year: 2015 ident: 10.1016/j.petsci.2025.09.020_bib46 article-title: An overview of pore pressure prediction using seismically-derived velocities publication-title: J. Geol. Min. Res. doi: 10.5897/JGMR15.0218 – year: 1971 ident: 10.1016/j.petsci.2025.09.020_bib37 – year: 1975 ident: 10.1016/j.petsci.2025.09.020_bib14 – volume: 56 start-page: 535 issue: 1 year: 2023 ident: 10.1016/j.petsci.2025.09.020_bib11 article-title: Pore pressure prediction by empirical and machine learning methods using conventional and drilling logs in carbonate rocks publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-022-03089-y – volume: 270 year: 2021 ident: 10.1016/j.petsci.2025.09.020_bib5 article-title: Improving the outlier detection method in concrete mix design by combining the isolation forest and local outlier factor publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121396 – volume: 10 start-page: 1 year: 2024 ident: 10.1016/j.petsci.2025.09.020_bib55 article-title: Application status and research progress of CO2 fracturing fluid in petroleum engineering: a brief review publication-title: Petroleum doi: 10.1016/j.petlm.2023.12.001 – volume: 62 start-page: 72 issue: 1 year: 2006 ident: 10.1016/j.petsci.2025.09.020_bib15 article-title: Scaling and assessment of data quality publication-title: Biolog. Crystallogr. doi: 10.1107/S0907444905036693 – volume: 10 start-page: 89 issue: 2 year: 1995 ident: 10.1016/j.petsci.2025.09.020_bib7 article-title: Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction publication-title: SPE Drill. Complet. doi: 10.2118/27488-PA – volume: 211 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib28 article-title: A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2022.110156 – volume: vol. 1857 year: 2000 ident: 10.1016/j.petsci.2025.09.020_bib12 article-title: Ensemble methods in machine learning – volume: 20 start-page: 733 issue: 2 year: 2023 ident: 10.1016/j.petsci.2025.09.020_bib13 article-title: How to improve machine learning models for lithofacies identification by practical and novel ensemble strategy and principles publication-title: Pet. Sci. doi: 10.1016/j.petsci.2022.09.006 – volume: 75 start-page: 644 issue: 4 year: 2010 ident: 10.1016/j.petsci.2025.09.020_bib39 article-title: Overview of overpressure in Bengal basin, India publication-title: J. Geol. Soc. India doi: 10.1007/s12594-010-0053-5 – volume: 210 year: 2022 ident: 10.1016/j.petsci.2025.09.020_bib10 article-title: A hybrid partial least squares regression-based real time pore pressure estimation method for complex geological drilling process publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.109771 |
| SSID | ssj0041762 |
| Score | 2.339937 |
| Snippet | The precise and real-time prediction of pore pressure is critical for optimizing drilling efficiency and mitigating the potential risks associated with... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| SubjectTerms | Machine learning Mud log Pore pressure Real-time Stacking ensemble approach |
| Title | A stacking ensemble approach for pore pressure prediction in real-time during drilling based on mud log data |
| URI | https://dx.doi.org/10.1016/j.petsci.2025.09.020 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1995-8226 databaseCode: M~E dateStart: 20070101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssj0041762 providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database issn: 1995-8226 databaseCode: PCBAR dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/eaasdb omitProxy: false ssIdentifier: ssj0041762 providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database issn: 1995-8226 databaseCode: M7S dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://search.proquest.com omitProxy: false ssIdentifier: ssj0041762 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 1995-8226 databaseCode: BENPR dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: false ssIdentifier: ssj0041762 providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database issn: 1995-8226 databaseCode: PIMPY dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/publiccontent omitProxy: false ssIdentifier: ssj0041762 providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt2kN7CH2S9IUOvS0Ka1u2rOOSpPTQhkJSSE9GkqXGYdcbNnHJqb-9M3p4FzaUttCLMV57bDTfer4Zz4OQ94UTUjqrmFCFY9y4mmnlNPyvqjxTQgsdmrh-Eicn9fm5_BKT2K_9OAHR9_Xtrbz6r6qGY6BsLJ39C3WPQuEA7IPSYQtqh-0fKX6G4QGDEfAJuKh2gaVRqXO4TyoExo3VUehmh522MynlESjknOG8-VS_2K660LUbzV2LnxYWQzvB8ZWxqm2ktjibazm3w2ISrepWTPpo2X9n31S0lT4MHuCienZ6sRzG5KBu8JZh48y1DMsOL2z8IUYr8nJMx4ohtK0yGv_WxTJxYCrVne_0EF64PAAvAp7_AKX61rT5dG3DxszCU5SFooDa4UfS6j55kItSYrbf55_HyUjzTPhZs-OdU1WlT_3bvtPdrGWDiZw9IbvRhaCzoPqn5J7tn5HHG40ln5P5jCYQ0AQCmkBAAQQUQUATCOgaBLTr6QgCGkBAEwioBwGFswAEFEBAEQQvyNcPx2eHH1mcq8EMELop43XbOiDaWlfSOj41rmwz08pallzVwlWOY4qcc3mtKgum1AphskIVShcOBwK9JDv9srd7hGZcSPB4bVHUFsVKU-RtmVnNuax0ofcJS-vWXIX2KU3KK7xswjo3uM7NVDawzvtEpMVtIlgDtWsADb-98tU_X_maPFoj9Q3ZuVkN9i15aH7cdNerdx42vwBhZ4Xn |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stacking+ensemble+approach+for+pore+pressure+prediction+in+real-time+during+drilling+based+on+mud+log+data&rft.jtitle=Petroleum+science&rft.au=Zhang%2C+Dong-Yang&rft.au=Ma%2C+Tian-Shou&rft.au=Liu%2C+Yang&rft.au=Zhang%2C+De-Cheng&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=1995-8226&rft_id=info:doi/10.1016%2Fj.petsci.2025.09.020&rft.externalDocID=S1995822625003516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-8226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-8226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-8226&client=summon |