Error Correction Decoding Algorithms of RS Codes Based on an Earlier Termination Algorithm to Find the Error Locator Polynomial

Reed-Solomon (RS) codes are widely used to correct errors in storage systems. Finding the error locator polynomial is one of the key steps in the error correction procedure of RS codes. Modular Approach (MA) is an effective algorithm for solving the Welch-Berlekamp (WB) key-equation problem to find...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 71; no. 4; pp. 2564 - 2575
Main Authors: Jiang, Zhengyi, Shi, Hao, Huang, Zhongyi, Song, Linqi, Bai, Bo, Zhang, Gong, Hou, Hanxu
Format: Journal Article
Language:English
Published: IEEE 01.04.2025
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reed-Solomon (RS) codes are widely used to correct errors in storage systems. Finding the error locator polynomial is one of the key steps in the error correction procedure of RS codes. Modular Approach (MA) is an effective algorithm for solving the Welch-Berlekamp (WB) key-equation problem to find the error locator polynomial that needs <inline-formula> <tex-math notation="LaTeX">2t </tex-math></inline-formula> steps, where t is the error correction capability. In this paper, we first present a new MA algorithm that only requires <inline-formula> <tex-math notation="LaTeX">2e </tex-math></inline-formula> steps and then propose two fast decoding algorithms for RS codes based on our MA algorithm, where e is the number of errors and <inline-formula> <tex-math notation="LaTeX">e\leq t </tex-math></inline-formula>. We propose the Improved-Frequency Domain Modular Approach (I-FDMA) algorithm that needs <inline-formula> <tex-math notation="LaTeX">2e </tex-math></inline-formula> steps to solve the error locator polynomial and present our first decoding algorithm based on the I-FDMA algorithm. We show that, compared with the existing methods based on MA algorithms, our I-FDMA algorithm can effectively reduce the decoding complexity of RS codes when <inline-formula> <tex-math notation="LaTeX">e\lt t </tex-math></inline-formula>. Furthermore, we propose the <inline-formula> <tex-math notation="LaTeX">t_{0} </tex-math></inline-formula>-Shortened I-FDMA (<inline-formula> <tex-math notation="LaTeX">t_{0} </tex-math></inline-formula>-SI-FDMA) algorithm (<inline-formula> <tex-math notation="LaTeX">t_{0} </tex-math></inline-formula> is a predetermined even number less than <inline-formula> <tex-math notation="LaTeX">2t-1 </tex-math></inline-formula>) based on the new termination mechanism to solve the error number e quickly. We propose our second decoding algorithm based on the SI-FDMA algorithm for RS codes and show that the multiplication complexity of our second decoding algorithm is lower than our first decoding algorithm (the I-FDMA decoding algorithm) when <inline-formula> <tex-math notation="LaTeX">2e\lt t_{0}+1 </tex-math></inline-formula>.
AbstractList Reed-Solomon (RS) codes are widely used to correct errors in storage systems. Finding the error locator polynomial is one of the key steps in the error correction procedure of RS codes. Modular Approach (MA) is an effective algorithm for solving the Welch-Berlekamp (WB) key-equation problem to find the error locator polynomial that needs <inline-formula> <tex-math notation="LaTeX">2t </tex-math></inline-formula> steps, where t is the error correction capability. In this paper, we first present a new MA algorithm that only requires <inline-formula> <tex-math notation="LaTeX">2e </tex-math></inline-formula> steps and then propose two fast decoding algorithms for RS codes based on our MA algorithm, where e is the number of errors and <inline-formula> <tex-math notation="LaTeX">e\leq t </tex-math></inline-formula>. We propose the Improved-Frequency Domain Modular Approach (I-FDMA) algorithm that needs <inline-formula> <tex-math notation="LaTeX">2e </tex-math></inline-formula> steps to solve the error locator polynomial and present our first decoding algorithm based on the I-FDMA algorithm. We show that, compared with the existing methods based on MA algorithms, our I-FDMA algorithm can effectively reduce the decoding complexity of RS codes when <inline-formula> <tex-math notation="LaTeX">e\lt t </tex-math></inline-formula>. Furthermore, we propose the <inline-formula> <tex-math notation="LaTeX">t_{0} </tex-math></inline-formula>-Shortened I-FDMA (<inline-formula> <tex-math notation="LaTeX">t_{0} </tex-math></inline-formula>-SI-FDMA) algorithm (<inline-formula> <tex-math notation="LaTeX">t_{0} </tex-math></inline-formula> is a predetermined even number less than <inline-formula> <tex-math notation="LaTeX">2t-1 </tex-math></inline-formula>) based on the new termination mechanism to solve the error number e quickly. We propose our second decoding algorithm based on the SI-FDMA algorithm for RS codes and show that the multiplication complexity of our second decoding algorithm is lower than our first decoding algorithm (the I-FDMA decoding algorithm) when <inline-formula> <tex-math notation="LaTeX">2e\lt t_{0}+1 </tex-math></inline-formula>.
Author Bai, Bo
Zhang, Gong
Shi, Hao
Song, Linqi
Huang, Zhongyi
Jiang, Zhengyi
Hou, Hanxu
Author_xml – sequence: 1
  givenname: Zhengyi
  orcidid: 0000-0002-2060-1108
  surname: Jiang
  fullname: Jiang, Zhengyi
  email: jzy21@mails.tsinghua.edu.cn
  organization: Department of Mathematics Sciences, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Hao
  surname: Shi
  fullname: Shi, Hao
  email: shih22@mails.tsinghua.edu.cn
  organization: Department of Mathematics Sciences, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Zhongyi
  surname: Huang
  fullname: Huang, Zhongyi
  email: zhongyih@tsinghua.edu.cn
  organization: Department of Mathematics Sciences, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Linqi
  surname: Song
  fullname: Song, Linqi
  email: linqi.song@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China
– sequence: 5
  givenname: Bo
  orcidid: 0000-0003-4796-8249
  surname: Bai
  fullname: Bai, Bo
  email: baibo8@huawei.com
  organization: Theory Laboratory, Central Research Institute, 2012 Labs, Huawei Technologies Company Ltd., Hong Kong, SAR, China
– sequence: 6
  givenname: Gong
  orcidid: 0000-0003-0283-7050
  surname: Zhang
  fullname: Zhang, Gong
  email: nicholas.zhang@huawei.com
  organization: Theory Laboratory, Central Research Institute, 2012 Labs, Huawei Technologies Company Ltd., Hong Kong, SAR, China
– sequence: 7
  givenname: Hanxu
  orcidid: 0000-0001-7328-9341
  surname: Hou
  fullname: Hou, Hanxu
  email: houhanxu@163.com
  organization: School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, China
BookMark eNpNkE1LAzEQhoNUsK3ePXjIH9iaz83usdZWCwVF1_OSZmfbyG4iyV568q-b2iLCwDDwPjPMM0Ej5x0gdEvJjFJS3lfrasYIkzMueckYu0BjKqXKylyKERoTQousFKK4QpMYP9MoJGVj9L0MwQe88CGAGax3-BGMb6zb4Xm388EO-z5i3-K39xRqIOIHHaHBKagdXurQWQi4gtBbp3_5PwwPHq-sa_CwB3w6s_FGD6m_-u7gfG91d40uW91FuDn3KfpYLavFc7Z5eVov5pvMMKqGDMSWE5ZLBlAqLYRhQCgtSENEyVtgbQ650GBApVJSUEXL9OOWtVwotS34FJHTXhN8jAHa-ivYXodDTUl9FFgngfVRYH0WmJC7E2IB4F-8UEpQyX8AMS9vDA
CODEN IETTAW
Cites_doi 10.1137/0108018
10.1109/TIT.2011.2165524
10.1109/ISIT57864.2024.10619425
10.1109/TCOMM.2022.3215998
10.1109/TIT.2016.2600417
10.1109/TCOMM.2003.809764
10.1017/cbo9780511808968
10.1109/TC.2023.3262922
10.1109/ACCESS.2021.3063142
10.1109/TCOMM.2007.898827
10.1109/TCOMM.2017.2737441
10.1002/0471739219
10.1109/18.391235
10.1109/ITW61385.2024.10806979
10.1109/TC.2019.2963827
10.1109/TIT.1981.1056312
10.1109/LCOMM.2020.2965453
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3539222
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 2575
ExternalDocumentID 10_1109_TIT_2025_3539222
10877415
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62371411; 12025104
– fundername: Research Grants Council of Hong Kong SAR
  grantid: GRF 11217823
– fundername: National Key Research and Development Program of China
  grantid: 2020YFA0712300
  funderid: 10.13039/501100012166
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515140003
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2020B0101110003
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c217t-e4b302652ee97a44c2e01180d0493fe2f6e64aece7ce77541719001b2f3477b83
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001487797000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sat Nov 29 08:07:13 EST 2025
Wed Aug 27 01:38:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217t-e4b302652ee97a44c2e01180d0493fe2f6e64aece7ce77541719001b2f3477b83
ORCID 0000-0003-0283-7050
0000-0002-2060-1108
0000-0003-4796-8249
0000-0001-7328-9341
PageCount 12
ParticipantIDs ieee_primary_10877415
crossref_primary_10_1109_TIT_2025_3539222
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
Berlekamp (ref3) 1984
ref11
ref10
ref2
ref1
ref17
ref16
ref18
ref8
ref7
ref9
ref4
ref6
ref5
Moon (ref15) 2005
References_xml – ident: ref2
  doi: 10.1137/0108018
– ident: ref8
  doi: 10.1109/TIT.2011.2165524
– ident: ref1
  doi: 10.1109/ISIT57864.2024.10619425
– ident: ref13
  doi: 10.1109/TCOMM.2022.3215998
– ident: ref9
  doi: 10.1109/TIT.2016.2600417
– ident: ref6
  doi: 10.1109/TCOMM.2003.809764
– ident: ref14
  doi: 10.1017/cbo9780511808968
– ident: ref18
  doi: 10.1109/TC.2023.3262922
– ident: ref11
  doi: 10.1109/ACCESS.2021.3063142
– ident: ref7
  doi: 10.1109/TCOMM.2007.898827
– volume-title: Algebraic Coding Theory
  year: 1984
  ident: ref3
– ident: ref16
  doi: 10.1109/TCOMM.2017.2737441
– volume-title: Error Correction Coding: Mathematical Methods and Algorithms
  year: 2005
  ident: ref15
  doi: 10.1002/0471739219
– ident: ref4
  doi: 10.1109/18.391235
– ident: ref12
  doi: 10.1109/ITW61385.2024.10806979
– ident: ref17
  doi: 10.1109/TC.2019.2963827
– ident: ref5
  doi: 10.1109/TIT.1981.1056312
– ident: ref10
  doi: 10.1109/LCOMM.2020.2965453
SSID ssj0014512
Score 2.4757237
Snippet Reed-Solomon (RS) codes are widely used to correct errors in storage systems. Finding the error locator polynomial is one of the key steps in the error...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 2564
SubjectTerms Coding
Complexity theory
Decoding
Electronic mail
Error correction
Error correction codes
Frequency division multiaccess
Iterative decoding
Polynomials
Reviews
Symbols
Title Error Correction Decoding Algorithms of RS Codes Based on an Earlier Termination Algorithm to Find the Error Locator Polynomial
URI https://ieeexplore.ieee.org/document/10877415
Volume 71
WOSCitedRecordID wos001487797000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60eNCD9VGxvpiDFw-pySbbTY61WhRKEa3gLWQ3Ey3URtJU8ORfd3aTSj14EEIIYSYJ-bLMfJkXY-eK84hLoZwoRDPCjCdOqBTSTmSu1oYU2e76Qzkahc_P0X1drG5rYRDRJp9hxxzaWH6a64X5VUYrPJTSlpSvSymrYq2fkEEgvKo1uEcrmEjHMibpRpfjuzExQS46viB3gPNfNmhlqIq1KYPmP59mh23XziP0KrR32RrO9lhzOZgB6nW6x7ZWugzus6-bosgL6Js5HLaKAa6JcxqbBb3pS15Myte3OeQZPDySUIpzuCLTlgIJJjMwHZDJdMK4ypqx-j9qUOYwIFYP5EZCdZshGUfi8XCfTz9NyXMybbGnwc24f-vUcxccTQSldDBQPlEzwREjmQSB5mg7xaXEJvwMedbFbpCgRkmbFIEnyatwPcUzP5BShf4Ba8zyGR4yUH7kikSjkl4aEPRhV6WhCNOuThVdjrfZxRKJ-L1qrxFbWuJGMaEWG9TiGrU2axkQVuSq93_0x_ljtmnUqzSbE9YoiwWesg39UU7mxZn9eL4B2xvDFg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF5KWkh6SFrXpU76mEMvOciRVrte6Zi6NjZ1jWlU8E1oV6PU4FpFlgs99a9ndiUb59BDQQghZldCn4aZb3cejH3UnMdcSe3FEdoWZjzzIq2RTrLwjbGkyFXXn6n5PFou40WbrO5yYRDRBZ9h3166vfy8NDu7VEYaHinlUsqfSiF40KRrHTYNhAya4uAB6TDRjv2upB_fJNOEuCCX_VCSQ8D5Iyt01FbFWZXxxX--zwt23rqPcNvg_ZI9wU2HXexbM0CrqR32_KjO4Cv2d1RVZQVD24nD5THAZ2Kd1mrB7fq-rFb1j59bKAv4dkdCOW7hExm3HEgw24CtgUzGE5ImbsaNPwyDuoQx8XogRxKax8zIPBKTh0W5_mOTnrN1l30fj5LhxGs7L3iGKErtodAhkTPJEWOVCWE4ulpxOfGJsEBeDHAgMjSo6FBSBIr8Cj_QvAiFUjoKX7OTTbnBNwx0GPsyM6hVkAsCPxroPJJRPjC5pul4j13vkUh_NQU2UkdM_Dgl1FKLWtqi1mNdC8KRXPP9L_9x_wM7nSRfZ-lsOv9yxc7sVE3QzVt2Ulc7fMeemd_1alu9dz_SAytPxl0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+Correction+Decoding+Algorithms+of+RS+Codes+Based+on+an+Earlier+Termination+Algorithm+to+Find+the+Error+Locator+Polynomial&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Jiang%2C+Zhengyi&rft.au=Shi%2C+Hao&rft.au=Huang%2C+Zhongyi&rft.au=Song%2C+Linqi&rft.date=2025-04-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=4&rft.spage=2564&rft.epage=2575&rft_id=info:doi/10.1109%2FTIT.2025.3539222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3539222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon