Tight Exponential Strong Converse for Source Coding Problem With Encoded Side Information

The source coding problem with encoded side information is considered. A lower bound on the strong converse exponent has been derived by Oohama, but its tightness has not been clarified. In this paper, we derive a tight strong converse exponent. For the special case where the side-information does n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 71; no. 3; pp. 1533 - 1545
Main Authors: Takeuchi, Daisuke, Watanabe, Shun
Format: Journal Article
Language:English
Published: IEEE 01.03.2025
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The source coding problem with encoded side information is considered. A lower bound on the strong converse exponent has been derived by Oohama, but its tightness has not been clarified. In this paper, we derive a tight strong converse exponent. For the special case where the side-information does not exist, we demonstrate that our tight exponent of the Wyner-Ahlswede-Körner (WAK) problem reduces to the known tight expression of that special case while Oohama's lower bound is strictly loose. The converse part is proved by a judicious use of the change-of-measure argument, which was introduced by Gu and Effros and further developed by Tyagi and Watanabe. A key component of the methodology by Tyagi and Watanabe is the use of soft Markov constraint, which was originally introduced by Oohama, as a penalty term to prove the Markov constraint at the end. A technical innovation of this paper compared to Tyagi and Watanabe is recognizing that the soft Markov constraint is a part of the exponent, rather than a penalty term that should vanish at the end; this recognition enables us to derive the matching achievability bound. In fact, via numerical experiment, we provide evidence that the soft Markov constraint is strictly positive. Compared to Oohama's derivation of the lower bound, which relies on the single-letterization of a certain moment-generating function, the derivation of our tight exponent only involves manipulations of the Kullback-Leibrer divergence and Shannon entropies. The achievability part is derived by a careful analysis of the type argument; however, unlike the conventional analysis for the achievable rate region, we need to derive the soft Markov constraint in the analysis of the correct probability. Furthermore, we present an application of our derivation of the strong converse exponent to the privacy amplification.
AbstractList The source coding problem with encoded side information is considered. A lower bound on the strong converse exponent has been derived by Oohama, but its tightness has not been clarified. In this paper, we derive a tight strong converse exponent. For the special case where the side-information does not exist, we demonstrate that our tight exponent of the Wyner-Ahlswede-Körner (WAK) problem reduces to the known tight expression of that special case while Oohama's lower bound is strictly loose. The converse part is proved by a judicious use of the change-of-measure argument, which was introduced by Gu and Effros and further developed by Tyagi and Watanabe. A key component of the methodology by Tyagi and Watanabe is the use of soft Markov constraint, which was originally introduced by Oohama, as a penalty term to prove the Markov constraint at the end. A technical innovation of this paper compared to Tyagi and Watanabe is recognizing that the soft Markov constraint is a part of the exponent, rather than a penalty term that should vanish at the end; this recognition enables us to derive the matching achievability bound. In fact, via numerical experiment, we provide evidence that the soft Markov constraint is strictly positive. Compared to Oohama's derivation of the lower bound, which relies on the single-letterization of a certain moment-generating function, the derivation of our tight exponent only involves manipulations of the Kullback-Leibrer divergence and Shannon entropies. The achievability part is derived by a careful analysis of the type argument; however, unlike the conventional analysis for the achievable rate region, we need to derive the soft Markov constraint in the analysis of the correct probability. Furthermore, we present an application of our derivation of the strong converse exponent to the privacy amplification.
Author Takeuchi, Daisuke
Watanabe, Shun
Author_xml – sequence: 1
  givenname: Daisuke
  orcidid: 0009-0003-5380-6972
  surname: Takeuchi
  fullname: Takeuchi, Daisuke
  email: takehome@vivaldi.net
  organization: Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and Technology, Koganei, Japan
– sequence: 2
  givenname: Shun
  orcidid: 0000-0002-1121-8633
  surname: Watanabe
  fullname: Watanabe, Shun
  email: shunwata@cc.tuat.ac.jp
  organization: Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and Technology, Koganei, Japan
BookMark eNpNkE9LAzEQxYNUsK3ePXjIF9iaZJPdzVFK1UJBoSviacmfSRtpk5JdRb-9Ke3B08y8ee8dfhM0CjEAQreUzCgl8r5dtjNGmJiVgsmKsgs0pkLUhawEH6ExIbQpJOfNFZr0_Wc-uaBsjD5av9kOePFzyHVh8GqH10OKYYPnMXxD6gG7mPA6fiUDWbM-v15T1DvY43c_bPEimGjB4rW3gJchu_dq8DFco0undj3cnOcUvT0u2vlzsXp5Ws4fVoVhtB4Ky61htTKWNUY73Whham1lVYPKWwWiMsyVojS101ZTYg1pgJWOKCl1RXU5ReTUa1Ls-wSuOyS_V-m3o6Q7oukymu6IpjujyZG7U8QDwD97wynnovwDobtjrg
CODEN IETTAW
Cites_doi 10.1109/18.340465
10.1109/ITW.2017.8277925
10.1109/ISIT.2019.8849694
10.1109/ISIT.2009.5205934
10.1017/CBO9780511921889
10.1109/TIT.2018.2889687
10.1109/TIT.2018.2873623
10.1007/BF00535682
10.1109/TIT.2020.3041791
10.3390/e21050469
10.1109/ITW.2017.8277964
10.1215/ijm/1255455455
10.1109/TIT.1975.1055374
10.3390/e20050352
10.1109/TIT.1979.1056003
10.1109/ISIT54713.2023.10207009
10.1109/18.476316
10.1109/TIT.2008.928985
10.1109/TIT.1975.1055469
10.1109/18.412679
10.1109/ISIT44484.2020.9174170
10.1017/9781108670203
10.1007/978-3-662-12066-8
10.1137/0217014
10.1093/ietfec/e90-a.7.1406
10.1109/ISIT.2015.7282593
10.1109/TIT.2019.2953877
10.3390/e21060567
10.4171/msl/13
10.1109/TIT.1973.1055007
10.1109/TIT.2016.2642985
10.1142/S0219749908003256
10.1109/ITW.2012.6404652
10.1109/TIT.2023.3327314
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3529612
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1545
ExternalDocumentID 10_1109_TIT_2025_3529612
10841445
Genre orig-research
GrantInformation_xml – fundername: Japan Society for the Promotion of Science KAKENHI
  grantid: 23H00468; 23K17455
  funderid: 10.13039/501100000646
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c217t-d4dc27acd28cbfb8b5c7bd967ea5c76e56c2f353c7fbdb10dc08e23f0a99b61b3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001468449300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sat Nov 29 08:19:12 EST 2025
Wed Aug 27 01:52:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217t-d4dc27acd28cbfb8b5c7bd967ea5c76e56c2f353c7fbdb10dc08e23f0a99b61b3
ORCID 0000-0002-1121-8633
0009-0003-5380-6972
PageCount 13
ParticipantIDs ieee_primary_10841445
crossref_primary_10_1109_TIT_2025_3529612
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref33
ref10
Oohama (ref11)
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Hayashi (ref29) 2006
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/18.340465
– ident: ref13
  doi: 10.1109/ITW.2017.8277925
– ident: ref36
  doi: 10.1109/ISIT.2019.8849694
– ident: ref9
  doi: 10.1109/ISIT.2009.5205934
– ident: ref28
  doi: 10.1017/CBO9780511921889
– ident: ref23
  doi: 10.1109/TIT.2018.2889687
– ident: ref25
  doi: 10.1109/TIT.2018.2873623
– ident: ref5
  doi: 10.1007/BF00535682
– ident: ref27
  doi: 10.1109/TIT.2020.3041791
– ident: ref22
  doi: 10.3390/e21050469
– ident: ref24
  doi: 10.1109/ITW.2017.8277964
– ident: ref4
  doi: 10.1215/ijm/1255455455
– start-page: 537
  volume-title: Proc. Int. Symp. Inf. Theory Appl. (ISITA)
  ident: ref11
  article-title: Exponent function for asymmetric broadcast channels at rates outside the capacity region
– ident: ref1
  doi: 10.1109/TIT.1975.1055374
– ident: ref3
  doi: 10.3390/e20050352
– ident: ref7
  doi: 10.1109/TIT.1979.1056003
– ident: ref15
  doi: 10.1109/ISIT54713.2023.10207009
– ident: ref32
  doi: 10.1109/18.476316
– ident: ref20
  doi: 10.1109/TIT.2008.928985
– ident: ref2
  doi: 10.1109/TIT.1975.1055469
– ident: ref18
  doi: 10.1109/18.412679
– ident: ref14
  doi: 10.1109/ISIT44484.2020.9174170
– ident: ref30
  doi: 10.1017/9781108670203
– ident: ref19
  doi: 10.1007/978-3-662-12066-8
– ident: ref31
  doi: 10.1137/0217014
– ident: ref21
  doi: 10.1093/ietfec/e90-a.7.1406
– ident: ref35
  doi: 10.1109/ISIT.2015.7282593
– ident: ref12
  doi: 10.1109/TIT.2019.2953877
– ident: ref10
  doi: 10.3390/e21060567
– ident: ref26
  doi: 10.4171/msl/13
– volume-title: Quantum Information: An Introduction
  year: 2006
  ident: ref29
– ident: ref6
  doi: 10.1109/TIT.1973.1055007
– ident: ref33
  doi: 10.1109/TIT.2016.2642985
– ident: ref34
  doi: 10.1142/S0219749908003256
– ident: ref17
  doi: 10.1109/ITW.2012.6404652
– ident: ref16
  doi: 10.1109/TIT.2023.3327314
SSID ssj0014512
Score 2.4943714
Snippet The source coding problem with encoded side information is considered. A lower bound on the strong converse exponent has been derived by Oohama, but its...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1533
SubjectTerms Atmospheric measurements
change of measure argument
Channel coding
Decoding
Error probability
exponent of correct probability
Hands
Lower bound
network information theory
Particle measurements
Privacy
Random variables
Source coding
Source coding with side information
strong converse theorem
Title Tight Exponential Strong Converse for Source Coding Problem With Encoded Side Information
URI https://ieeexplore.ieee.org/document/10841445
Volume 71
WOSCitedRecordID wos001468449300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGCqWI8pIHFoYU5-E4HlHVCiRUVWoRZYr8hC5p1aaIn4_tpKgMDGyWlUTWXU7n7-6-O4BbYnjoS6WMVjhIQiEDrnQaWNeuVIIFlsYThZ_paJTNZmxck9U9F0Zr7YvPdM8tfS5fLeTGhcqshWeJBQCkAQ1K04qs9ZMySEhYtQYPrQVb0LHNSWJ2P32aWiQYkV7ssoxh9MsH7QxV8T5l2PrnaY7hqL48oodK2yewp4s2tLaDGVBtp2043OkyeApvUwfA0eBruShcbZD9wsQFwN9R35Wcr9Ya2Zsrmvgwvt1z3gyNq0Ez6HVefqBB4ZjvCk3mSqOawOQU2oGX4WDafwzqiQqBtNCjDFSiZES5VFEmhRGZIJIKxVKquV2lmqQyMjGJJTVCiRAriTMdxQZzxkQaivgMmoU96zkgwRLDCec8VjpRFkeHhmeKi8wYigVjXbjbyjhfVo0zcg84MMutPnKnj7zWRxc6Trw7z1WSvfhj_xIO3OtVKdgVNMvVRl_Dvvws5-vVjf8tvgFnNLjL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xkoCBQinijQcWhoCT2Ek8oqqIilJVahBlivyELm3VB-LnYzspKgMDm2VFlnWX0_m7u-8O4JoaHvpSKaMVDkgoZMCVTgLr2pUiWGBpPFG4k3a72WDAehVZ3XNhtNa--EzfuqXP5auxXLhQmbXwjFgAQNdhkxIS4ZKu9ZM0IDQsm4OH1oYt7FhmJTG7y9u5xYIRvY1dnjGMfnmhlbEq3qs81P55n33Yq56P6L7U9wGs6VEdasvRDKiy1DrsrvQZPIS33EFw1PqajEeuOsie0Hch8HfUdEXn05lG9u2K-j6Qb_ecP0O9ctQMeh3OP1Br5LjvCvWHSqOKwuRU2oCXh1befAyqmQqBtOBjHiiiZJRyqaJMCiMyQWUqFEtSze0q0TSRkYlpLFMjlAixkjjTUWwwZ0wkoYiPYGNk73oMSDBiOOWcx0oTZZF0aHimuMiMSbFg7ARuljIuJmXrjMJDDswKq4_C6aOo9HECDSfele9KyZ7-sX8F24_5c6fotLtPZ7DjjioLw85hYz5d6AvYkp_z4Wx66X-Rby9vvBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+Exponential+Strong+Converse+for+Source+Coding+Problem+With+Encoded+Side+Information&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Takeuchi%2C+Daisuke&rft.au=Watanabe%2C+Shun&rft.date=2025-03-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=3&rft.spage=1533&rft.epage=1545&rft_id=info:doi/10.1109%2FTIT.2025.3529612&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3529612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon