Distributed autoencoder classifier network for small‐scale and scattered COVID ‐19 dataset classification

In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not sufficient for training a machine learning model and therefore cannot be fully utilized. Given that a large amount of small‐scale data is widely dist...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of imaging systems and technology Ročník 33; číslo 6; s. 1870 - 1881
Hlavní autoři: Yang, Yuan, Zhang, Lin, Ren, Lei, Wang, Xiaohan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Wiley Subscription Services, Inc 01.11.2023
Témata:
ISSN:0899-9457, 1098-1098
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not sufficient for training a machine learning model and therefore cannot be fully utilized. Given that a large amount of small‐scale data is widely distributed between hospitals/individuals, it is necessary to deploy an easy, scalable, and secure distributed computational framework. We aim to aggregate these scattered and small‐scale data to train neural networks and achieve classification and detection on coronavirus disease 2019 (COVID‐19) datasets. We propose a distributed autoencoder (AE) classifier network for this purpose. It contains a central classifier and multiple distributed AEs. The AEs are used as generators. A local generator uses an actual COVID‐19 computed tomography image as the input and outputs a synthetic image. The well‐trained generator provides an image to train the central classifier model. The central classifier network model learns information from all the generated COVID‐19 data using the distributed AE. Experiments are performed using some COVID‐19 datasets. The distributed AE classifier network outperforms all the models that use a single subset, and its performance is similar to that of a regular classifier. The proposed network solves the problem of using small‐scale and scattered COVID‐19 data to train neural networks while ensuring data privacy. The accuracy of the network is the same as that achieved using the entire data.
AbstractList In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not sufficient for training a machine learning model and therefore cannot be fully utilized. Given that a large amount of small‐scale data is widely distributed between hospitals/individuals, it is necessary to deploy an easy, scalable, and secure distributed computational framework. We aim to aggregate these scattered and small‐scale data to train neural networks and achieve classification and detection on coronavirus disease 2019 (COVID‐19) datasets. We propose a distributed autoencoder (AE) classifier network for this purpose. It contains a central classifier and multiple distributed AEs. The AEs are used as generators. A local generator uses an actual COVID‐19 computed tomography image as the input and outputs a synthetic image. The well‐trained generator provides an image to train the central classifier model. The central classifier network model learns information from all the generated COVID‐19 data using the distributed AE. Experiments are performed using some COVID‐19 datasets. The distributed AE classifier network outperforms all the models that use a single subset, and its performance is similar to that of a regular classifier. The proposed network solves the problem of using small‐scale and scattered COVID‐19 data to train neural networks while ensuring data privacy. The accuracy of the network is the same as that achieved using the entire data.
Author Wang, Xiaohan
Zhang, Lin
Yang, Yuan
Ren, Lei
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0002-4501-3708
  surname: Yang
  fullname: Yang, Yuan
  organization: Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine School of Medicine and Engineering Beijing China, Key Laboratory of Big Data‐Based Precision Medicine Ministry of Industry and Information Technology Beijing China, School of Automation Science and Electrical Engineering Beihang University Beijing China
– sequence: 2
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine School of Medicine and Engineering Beijing China, Key Laboratory of Big Data‐Based Precision Medicine Ministry of Industry and Information Technology Beijing China, School of Automation Science and Electrical Engineering Beihang University Beijing China
– sequence: 3
  givenname: Lei
  surname: Ren
  fullname: Ren, Lei
  organization: Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine School of Medicine and Engineering Beijing China, Key Laboratory of Big Data‐Based Precision Medicine Ministry of Industry and Information Technology Beijing China, School of Automation Science and Electrical Engineering Beihang University Beijing China
– sequence: 4
  givenname: Xiaohan
  surname: Wang
  fullname: Wang, Xiaohan
  organization: School of Automation Science and Electrical Engineering Beihang University Beijing China
BookMark eNo9UE1LAzEQDVLBtnrwHwQ8ediaZLNNcpTWj0Khl-I1ZLMT2Lrd1CSLePMn-Bv9JaZWvMy84b15w7wJGvW-B4SuKZlRQthduzczxpRgZ2hMiZLFsYzQmEilCsUrcYEmMe4IobQi1Rjtl21Moa2HBA02Q_LQW99AwLYzMbauzbCH9O7DK3Y-4Lg3Xff9-RWt6QCbvsEZpQQhry82L6slziRVuDHJREj_NlnU-v4SnTvTRbj661O0fXzYLp6L9eZptbhfF5ZRkQrDua3LGrhrJJFC1SQD4Tgp3RwMYVUFopQNF9QRyjJtrKESVP4Jqrktp-jmZHsI_m2AmPTOD6HPFzWTkleSUSaz6vakssHHGMDpQ8jxhQ9NiT6GqfOkf8MsfwCieWwE
Cites_doi 10.1016/j.canlet.2016.05.033
10.1101/2020.04.24.20078584v3t
10.1016/j.compmedimag.2019.101684
10.3390/jimaging9010001
10.1186/s40537‐019‐0197‐0
10.1016/j.neuroimage.2017.03.027
10.1109/JSEN.2021.3062442
10.1016/j.irbm.2020.05.003
10.1016/j.patrec.2005.10.010
10.1007/s00259‐020‐04929‐1
10.1016/j.patrec.2020.10.001
10.1016/S0140‐6736(20)30183‐5
10.1016/j.ejrad.2020.109041
10.1089/tmj.2011.0180
10.1109/JSEN.2020.3025855
10.1038/s41586‐021‐03583‐3
10.1007/s11222‐009‐9153‐8
10.1109/ICCV.2017.299
10.1016/j.patcog.2021
10.1109/TKDE.2005.50
10.1109/BIGCOM.2019.00030
10.1093/biomet/76.3.503
10.1016/S0140‐6736(20)30185‐9
10.1109/AIMV53313.2021.9670977
10.1038/s41598‐022‐21700‐8
10.1109/TBME.2018.2814538
10.32604/cmc.2021.018040
10.1038/s41746‐018‐0029‐1
10.1007/s11760‐021‐01991‐6
10.1109/TMI.2018.2827462
10.1016/j.media.2018.07.010
10.1038/s41591‐018‐0300‐7
10.1109/CVPR.2017.632
10.1117/1.jmi.8.s1.010902
10.1145/3298981
10.1118/1.2868757
10.1016/B978‐0‐12‐816034‐3.00005‐5
10.1145/3451357
10.1016/j.csda.2007.10.002
10.31224/osf.io/yt9sx
10.1016/j.displa.2022.102150
10.1101/2020.04.13.20063941
ContentType Journal Article
Copyright 2023 Wiley Periodicals, LLC.
Copyright_xml – notice: 2023 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22972
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 1881
ExternalDocumentID 10_1002_ima_22972
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ID FETCH-LOGICAL-c217t-a44cb3be4fd80879b0fd87f403f6ea0255e738d471f0129b0aca18e9115e56c3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071549000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-9457
IngestDate Fri Jul 25 07:22:46 EDT 2025
Sat Nov 29 02:46:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c217t-a44cb3be4fd80879b0fd87f403f6ea0255e738d471f0129b0aca18e9115e56c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4501-3708
PQID 2884582128
PQPubID 1026352
PageCount 12
ParticipantIDs proquest_journals_2884582128
crossref_primary_10_1002_ima_22972
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References Zhang Y (e_1_2_9_23_1) 2020
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Hall LO (e_1_2_9_25_1) 2020
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Brendan McMahan H (e_1_2_9_53_1) 2017
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_8_1
  doi: 10.1016/j.canlet.2016.05.033
– ident: e_1_2_9_47_1
  doi: 10.1101/2020.04.24.20078584v3t
– ident: e_1_2_9_43_1
  doi: 10.1016/j.compmedimag.2019.101684
– start-page: 1
  year: 2020
  ident: e_1_2_9_25_1
  article-title: Finding COVID‐19 from chest X‐rays using deep learning on a small dataset
  publication-title: arXiv
– ident: e_1_2_9_2_1
  doi: 10.3390/jimaging9010001
– ident: e_1_2_9_38_1
  doi: 10.1186/s40537‐019‐0197‐0
– ident: e_1_2_9_39_1
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neuroimage.2017.03.027
– start-page: 54
  volume-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS
  year: 2017
  ident: e_1_2_9_53_1
– ident: e_1_2_9_14_1
  doi: 10.1109/JSEN.2021.3062442
– ident: e_1_2_9_35_1
– ident: e_1_2_9_44_1
– ident: e_1_2_9_46_1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.irbm.2020.05.003
– ident: e_1_2_9_49_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_9_27_1
  doi: 10.1007/s00259‐020‐04929‐1
– ident: e_1_2_9_20_1
  doi: 10.1016/j.patrec.2020.10.001
– ident: e_1_2_9_22_1
– ident: e_1_2_9_5_1
  doi: 10.1016/S0140‐6736(20)30183‐5
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ejrad.2020.109041
– ident: e_1_2_9_11_1
  doi: 10.1089/tmj.2011.0180
– ident: e_1_2_9_13_1
  doi: 10.1109/JSEN.2020.3025855
– ident: e_1_2_9_34_1
  doi: 10.1038/s41586‐021‐03583‐3
– ident: e_1_2_9_52_1
  doi: 10.1007/s11222‐009‐9153‐8
– ident: e_1_2_9_40_1
  doi: 10.1109/ICCV.2017.299
– ident: e_1_2_9_19_1
  doi: 10.1016/j.patcog.2021
– ident: e_1_2_9_48_1
  doi: 10.1109/TKDE.2005.50
– ident: e_1_2_9_29_1
  doi: 10.1109/BIGCOM.2019.00030
– ident: e_1_2_9_51_1
  doi: 10.1093/biomet/76.3.503
– ident: e_1_2_9_31_1
– start-page: 1
  year: 2020
  ident: e_1_2_9_23_1
  article-title: Covid‐da: deep domain adaptation from typical pneumonia to covid‐19
  publication-title: arXiv
– ident: e_1_2_9_4_1
  doi: 10.1016/S0140‐6736(20)30185‐9
– ident: e_1_2_9_7_1
  doi: 10.1109/AIMV53313.2021.9670977
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598‐022‐21700‐8
– ident: e_1_2_9_41_1
  doi: 10.1109/TBME.2018.2814538
– ident: e_1_2_9_54_1
– ident: e_1_2_9_21_1
– ident: e_1_2_9_37_1
  doi: 10.32604/cmc.2021.018040
– ident: e_1_2_9_3_1
  doi: 10.1038/s41746‐018‐0029‐1
– ident: e_1_2_9_15_1
  doi: 10.1007/s11760‐021‐01991‐6
– ident: e_1_2_9_42_1
  doi: 10.1109/TMI.2018.2827462
– ident: e_1_2_9_33_1
  doi: 10.1016/j.media.2018.07.010
– ident: e_1_2_9_30_1
  doi: 10.1038/s41591‐018‐0300‐7
– ident: e_1_2_9_45_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_9_9_1
  doi: 10.1117/1.jmi.8.s1.010902
– ident: e_1_2_9_28_1
  doi: 10.1145/3298981
– ident: e_1_2_9_32_1
  doi: 10.1118/1.2868757
– ident: e_1_2_9_10_1
  doi: 10.1016/B978‐0‐12‐816034‐3.00005‐5
– ident: e_1_2_9_36_1
  doi: 10.1145/3451357
– ident: e_1_2_9_50_1
  doi: 10.1016/j.csda.2007.10.002
– ident: e_1_2_9_6_1
  doi: 10.31224/osf.io/yt9sx
– ident: e_1_2_9_16_1
  doi: 10.1016/j.displa.2022.102150
– ident: e_1_2_9_18_1
  doi: 10.1101/2020.04.13.20063941
SSID ssj0011505
Score 2.3258586
Snippet In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1870
SubjectTerms Classification
Classifiers
Computed tomography
COVID-19
Datasets
Hospitals
Machine learning
Medical imaging
Neural networks
Synthetic data
Viral diseases
Title Distributed autoencoder classifier network for small‐scale and scattered COVID ‐19 dataset classification
URI https://www.proquest.com/docview/2884582128
Volume 33
WOSCitedRecordID wos001071549000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWFiQ4VFBAFFpkIW5VIH-7to-o2wqkVUFoQdtT5HgdEbSbrZps1SOPwDvxJjwJM7bjZNlLOXCxrCR2lMyn8Xg88w0hrzWLsTaaCgrQiwFySgVcSpOxnII9IAqezE2xCXZ-zmcz8Wkw-NXmwlwvWFXxmxtx-V9FDddA2Jg6-w_i9pPCBeiD0KEFsUN7K8GPkQoXq1iBKSnXzQqZKpEwQqGdXBaYXVLZ2G8TYlgv5WLhQx5qEJk9UIAeJvqgA_jj1w_jY_9IJI4xrLTWjZ9SdeL93kXGd47GPj3F0pZFsgzSliC62XLvXzgv9sW6A693bU_KLnvNKs2JLruDAfvQrJSrb26wc2rEicvu6-k-JA5NLXf1G211M1KfYtNX3pZFw4G0r4kjbguSuFU94rYyzNaKYRloS-SgioWtIrTJyv3XauljGC3fc5zB0MwMvUN2YzYUsDrsjj-ffZn4wyywuU0kbftNLcFVGL_17900izatAmPqTB-SPbdHoe8sth6Rga72yYMec-U-uWcih1X9mCx7eKM9vNEOb9ThjQLeqMHb7x8_DdIoiJ96pFGDNAo3I0Edxugmxp6Q6dnp9OR94Gp4BAo2u00g01TlSa7TYs5DzkQeQocVaZgUIy1xQ6tZwudgIhXoEs1DqWTENSzBQz0cqeQp2alWlX5GKG7tYfM9UvM4TxkvuEb2vlAwzeNE6_yAvGr_YHZpmVqyLRkdkMP232YO-3UWc46nx2CpPb_NHC_I_Q6yh2SnuVrrI3JXXTdlffXSCf8PyriVkA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+autoencoder+classifier+network+for+small%E2%80%90scale+and+scattered+COVID+%E2%80%9019+dataset+classification&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Yang%2C+Yuan&rft.au=Zhang%2C+Lin&rft.au=Ren%2C+Lei&rft.au=Wang%2C+Xiaohan&rft.date=2023-11-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=33&rft.issue=6&rft.spage=1870&rft.epage=1881&rft_id=info:doi/10.1002%2Fima.22972&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon