Distributed autoencoder classifier network for small‐scale and scattered COVID ‐19 dataset classification
In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not sufficient for training a machine learning model and therefore cannot be fully utilized. Given that a large amount of small‐scale data is widely dist...
Saved in:
| Published in: | International journal of imaging systems and technology Vol. 33; no. 6; pp. 1870 - 1881 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Wiley Subscription Services, Inc
01.11.2023
|
| Subjects: | |
| ISSN: | 0899-9457, 1098-1098 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not sufficient for training a machine learning model and therefore cannot be fully utilized. Given that a large amount of small‐scale data is widely distributed between hospitals/individuals, it is necessary to deploy an easy, scalable, and secure distributed computational framework. We aim to aggregate these scattered and small‐scale data to train neural networks and achieve classification and detection on coronavirus disease 2019 (COVID‐19) datasets. We propose a distributed autoencoder (AE) classifier network for this purpose. It contains a central classifier and multiple distributed AEs. The AEs are used as generators. A local generator uses an actual COVID‐19 computed tomography image as the input and outputs a synthetic image. The well‐trained generator provides an image to train the central classifier model. The central classifier network model learns information from all the generated COVID‐19 data using the distributed AE. Experiments are performed using some COVID‐19 datasets. The distributed AE classifier network outperforms all the models that use a single subset, and its performance is similar to that of a regular classifier. The proposed network solves the problem of using small‐scale and scattered COVID‐19 data to train neural networks while ensuring data privacy. The accuracy of the network is the same as that achieved using the entire data. |
|---|---|
| AbstractList | In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not sufficient for training a machine learning model and therefore cannot be fully utilized. Given that a large amount of small‐scale data is widely distributed between hospitals/individuals, it is necessary to deploy an easy, scalable, and secure distributed computational framework. We aim to aggregate these scattered and small‐scale data to train neural networks and achieve classification and detection on coronavirus disease 2019 (COVID‐19) datasets. We propose a distributed autoencoder (AE) classifier network for this purpose. It contains a central classifier and multiple distributed AEs. The AEs are used as generators. A local generator uses an actual COVID‐19 computed tomography image as the input and outputs a synthetic image. The well‐trained generator provides an image to train the central classifier model. The central classifier network model learns information from all the generated COVID‐19 data using the distributed AE. Experiments are performed using some COVID‐19 datasets. The distributed AE classifier network outperforms all the models that use a single subset, and its performance is similar to that of a regular classifier. The proposed network solves the problem of using small‐scale and scattered COVID‐19 data to train neural networks while ensuring data privacy. The accuracy of the network is the same as that achieved using the entire data. |
| Author | Wang, Xiaohan Zhang, Lin Yang, Yuan Ren, Lei |
| Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0002-4501-3708 surname: Yang fullname: Yang, Yuan organization: Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine School of Medicine and Engineering Beijing China, Key Laboratory of Big Data‐Based Precision Medicine Ministry of Industry and Information Technology Beijing China, School of Automation Science and Electrical Engineering Beihang University Beijing China – sequence: 2 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine School of Medicine and Engineering Beijing China, Key Laboratory of Big Data‐Based Precision Medicine Ministry of Industry and Information Technology Beijing China, School of Automation Science and Electrical Engineering Beihang University Beijing China – sequence: 3 givenname: Lei surname: Ren fullname: Ren, Lei organization: Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine School of Medicine and Engineering Beijing China, Key Laboratory of Big Data‐Based Precision Medicine Ministry of Industry and Information Technology Beijing China, School of Automation Science and Electrical Engineering Beihang University Beijing China – sequence: 4 givenname: Xiaohan surname: Wang fullname: Wang, Xiaohan organization: School of Automation Science and Electrical Engineering Beihang University Beijing China |
| BookMark | eNo9UE1LAzEQDVLBtnrwHwQ8ediaZLNNcpTWj0Khl-I1ZLMT2Lrd1CSLePMn-Bv9JaZWvMy84b15w7wJGvW-B4SuKZlRQthduzczxpRgZ2hMiZLFsYzQmEilCsUrcYEmMe4IobQi1Rjtl21Moa2HBA02Q_LQW99AwLYzMbauzbCH9O7DK3Y-4Lg3Xff9-RWt6QCbvsEZpQQhry82L6slziRVuDHJREj_NlnU-v4SnTvTRbj661O0fXzYLp6L9eZptbhfF5ZRkQrDua3LGrhrJJFC1SQD4Tgp3RwMYVUFopQNF9QRyjJtrKESVP4Jqrktp-jmZHsI_m2AmPTOD6HPFzWTkleSUSaz6vakssHHGMDpQ8jxhQ9NiT6GqfOkf8MsfwCieWwE |
| Cites_doi | 10.1016/j.canlet.2016.05.033 10.1101/2020.04.24.20078584v3t 10.1016/j.compmedimag.2019.101684 10.3390/jimaging9010001 10.1186/s40537‐019‐0197‐0 10.1016/j.neuroimage.2017.03.027 10.1109/JSEN.2021.3062442 10.1016/j.irbm.2020.05.003 10.1016/j.patrec.2005.10.010 10.1007/s00259‐020‐04929‐1 10.1016/j.patrec.2020.10.001 10.1016/S0140‐6736(20)30183‐5 10.1016/j.ejrad.2020.109041 10.1089/tmj.2011.0180 10.1109/JSEN.2020.3025855 10.1038/s41586‐021‐03583‐3 10.1007/s11222‐009‐9153‐8 10.1109/ICCV.2017.299 10.1016/j.patcog.2021 10.1109/TKDE.2005.50 10.1109/BIGCOM.2019.00030 10.1093/biomet/76.3.503 10.1016/S0140‐6736(20)30185‐9 10.1109/AIMV53313.2021.9670977 10.1038/s41598‐022‐21700‐8 10.1109/TBME.2018.2814538 10.32604/cmc.2021.018040 10.1038/s41746‐018‐0029‐1 10.1007/s11760‐021‐01991‐6 10.1109/TMI.2018.2827462 10.1016/j.media.2018.07.010 10.1038/s41591‐018‐0300‐7 10.1109/CVPR.2017.632 10.1117/1.jmi.8.s1.010902 10.1145/3298981 10.1118/1.2868757 10.1016/B978‐0‐12‐816034‐3.00005‐5 10.1145/3451357 10.1016/j.csda.2007.10.002 10.31224/osf.io/yt9sx 10.1016/j.displa.2022.102150 10.1101/2020.04.13.20063941 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley Periodicals, LLC. |
| Copyright_xml | – notice: 2023 Wiley Periodicals, LLC. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ima.22972 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-1098 |
| EndPage | 1881 |
| ExternalDocumentID | 10_1002_ima_22972 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT |
| ID | FETCH-LOGICAL-c217t-a44cb3be4fd80879b0fd87f403f6ea0255e738d471f0129b0aca18e9115e56c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071549000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0899-9457 |
| IngestDate | Fri Jul 25 07:22:46 EDT 2025 Sat Nov 29 02:46:16 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c217t-a44cb3be4fd80879b0fd87f403f6ea0255e738d471f0129b0aca18e9115e56c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4501-3708 |
| PQID | 2884582128 |
| PQPubID | 1026352 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2884582128 crossref_primary_10_1002_ima_22972 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of imaging systems and technology |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | Zhang Y (e_1_2_9_23_1) 2020 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Hall LO (e_1_2_9_25_1) 2020 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Brendan McMahan H (e_1_2_9_53_1) 2017 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – ident: e_1_2_9_8_1 doi: 10.1016/j.canlet.2016.05.033 – ident: e_1_2_9_47_1 doi: 10.1101/2020.04.24.20078584v3t – ident: e_1_2_9_43_1 doi: 10.1016/j.compmedimag.2019.101684 – start-page: 1 year: 2020 ident: e_1_2_9_25_1 article-title: Finding COVID‐19 from chest X‐rays using deep learning on a small dataset publication-title: arXiv – ident: e_1_2_9_2_1 doi: 10.3390/jimaging9010001 – ident: e_1_2_9_38_1 doi: 10.1186/s40537‐019‐0197‐0 – ident: e_1_2_9_39_1 – ident: e_1_2_9_12_1 doi: 10.1016/j.neuroimage.2017.03.027 – start-page: 54 volume-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS year: 2017 ident: e_1_2_9_53_1 – ident: e_1_2_9_14_1 doi: 10.1109/JSEN.2021.3062442 – ident: e_1_2_9_35_1 – ident: e_1_2_9_44_1 – ident: e_1_2_9_46_1 – ident: e_1_2_9_24_1 doi: 10.1016/j.irbm.2020.05.003 – ident: e_1_2_9_49_1 doi: 10.1016/j.patrec.2005.10.010 – ident: e_1_2_9_27_1 doi: 10.1007/s00259‐020‐04929‐1 – ident: e_1_2_9_20_1 doi: 10.1016/j.patrec.2020.10.001 – ident: e_1_2_9_22_1 – ident: e_1_2_9_5_1 doi: 10.1016/S0140‐6736(20)30183‐5 – ident: e_1_2_9_26_1 doi: 10.1016/j.ejrad.2020.109041 – ident: e_1_2_9_11_1 doi: 10.1089/tmj.2011.0180 – ident: e_1_2_9_13_1 doi: 10.1109/JSEN.2020.3025855 – ident: e_1_2_9_34_1 doi: 10.1038/s41586‐021‐03583‐3 – ident: e_1_2_9_52_1 doi: 10.1007/s11222‐009‐9153‐8 – ident: e_1_2_9_40_1 doi: 10.1109/ICCV.2017.299 – ident: e_1_2_9_19_1 doi: 10.1016/j.patcog.2021 – ident: e_1_2_9_48_1 doi: 10.1109/TKDE.2005.50 – ident: e_1_2_9_29_1 doi: 10.1109/BIGCOM.2019.00030 – ident: e_1_2_9_51_1 doi: 10.1093/biomet/76.3.503 – ident: e_1_2_9_31_1 – start-page: 1 year: 2020 ident: e_1_2_9_23_1 article-title: Covid‐da: deep domain adaptation from typical pneumonia to covid‐19 publication-title: arXiv – ident: e_1_2_9_4_1 doi: 10.1016/S0140‐6736(20)30185‐9 – ident: e_1_2_9_7_1 doi: 10.1109/AIMV53313.2021.9670977 – ident: e_1_2_9_17_1 doi: 10.1038/s41598‐022‐21700‐8 – ident: e_1_2_9_41_1 doi: 10.1109/TBME.2018.2814538 – ident: e_1_2_9_54_1 – ident: e_1_2_9_21_1 – ident: e_1_2_9_37_1 doi: 10.32604/cmc.2021.018040 – ident: e_1_2_9_3_1 doi: 10.1038/s41746‐018‐0029‐1 – ident: e_1_2_9_15_1 doi: 10.1007/s11760‐021‐01991‐6 – ident: e_1_2_9_42_1 doi: 10.1109/TMI.2018.2827462 – ident: e_1_2_9_33_1 doi: 10.1016/j.media.2018.07.010 – ident: e_1_2_9_30_1 doi: 10.1038/s41591‐018‐0300‐7 – ident: e_1_2_9_45_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_9_9_1 doi: 10.1117/1.jmi.8.s1.010902 – ident: e_1_2_9_28_1 doi: 10.1145/3298981 – ident: e_1_2_9_32_1 doi: 10.1118/1.2868757 – ident: e_1_2_9_10_1 doi: 10.1016/B978‐0‐12‐816034‐3.00005‐5 – ident: e_1_2_9_36_1 doi: 10.1145/3451357 – ident: e_1_2_9_50_1 doi: 10.1016/j.csda.2007.10.002 – ident: e_1_2_9_6_1 doi: 10.31224/osf.io/yt9sx – ident: e_1_2_9_16_1 doi: 10.1016/j.displa.2022.102150 – ident: e_1_2_9_18_1 doi: 10.1101/2020.04.13.20063941 |
| SSID | ssj0011505 |
| Score | 2.3258586 |
| Snippet | In healthcare, small‐scare data are stored with individual entities, such as hospitals, and they are not shared. However, data with one entity are not... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1870 |
| SubjectTerms | Classification Classifiers Computed tomography COVID-19 Datasets Hospitals Machine learning Medical imaging Neural networks Synthetic data Viral diseases |
| Title | Distributed autoencoder classifier network for small‐scale and scattered COVID ‐19 dataset classification |
| URI | https://www.proquest.com/docview/2884582128 |
| Volume | 33 |
| WOSCitedRecordID | wos001071549000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-1098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWFiQ4ICgg-gOyELcqkL_d2EfUpQJpVRBaqu0pchxHDdrNVk226rGPwDv1TfokzNiOk2Uv5cDFsrK2o818smfGM98Q8p5Hfo7HhAfGTwwGisi9zM_Ras0jMZIZZ5qn4HSSnJyw2Yx_Hwxu21yYq3lSVez6ml_8V1HDMxA2ps7-g7jdovAA-iB0aEHs0N5L8GOkwsUqVqBKilWzRKZKJIyQqCeXBWaXVCb2W4cY1gsxn7uQhxpEZi4UoIeJPugA_nb6dXzohgT8EMNKa9W4JWUn3l9dZHznaOzTUyxMWSTDIG0IopsN9_6Z9WKfrTrwOtf2pOyy18ymOVFldzFgBs1KsTy3k61TI4xsdl9v70Pi0NhwV39QZm9G6lNs-pu3YdGwIO3vxAEzBUnsqR4wUxlm48QwDLQlclCF3FQRWmfl_uu0dDGMhu85TGFqqqc-INthMuRwOmyPfxz_nLjLLNC5dSRt-59agis__Ojeu64WrWsFWtWZPiNPrY1CPxlsPScDVe2QJz3myh3ySEcOy_oFWfTwRnt4ox3eqMUbBbxRjbe7m98aaRTETx3SqEYahR8DTi3G6DrGXpLp8efp0RfP1vDwJBi7jSfiWGZRpuIiZz5LeOZDJyliPypGSqBBq5KI5aAiFegSzXwhRcAUHMFDNRzJ6BXZqpaVek3gtVwVsQj9PM5iGJLBeJHhvb5MoiEvdsm79gumF4apJd2Q0S45aL9tarFfpyFjeHsMmtrefdbYJ487yB6QreZypd6Qh_KqKevLt1b4fwDU5JaD |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+autoencoder+classifier+network+for+small%E2%80%90scale+and+scattered+COVID+%E2%80%9019+dataset+classification&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Yang%2C+Yuan&rft.au=Zhang%2C+Lin&rft.au=Ren%2C+Lei&rft.au=Wang%2C+Xiaohan&rft.date=2023-11-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=33&rft.issue=6&rft.spage=1870&rft.epage=1881&rft_id=info:doi/10.1002%2Fima.22972&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |