Prediction of type 2 diabetes using support vector machine with enhanced levy flight based Fruitfly optimization algorithm and feature selection approaches

Researchers have been leveraging various data analytics methods for Diabetes mellitus (DM) diagnosis, prognosis and management. The data analytics paradigm has become advanced and automated with the emergence of machine learning (ML) and deep learning (DL) algorithms. With new techniques, the predic...

Full description

Saved in:
Bibliographic Details
Published in:Yugoslav Journal of Operations Research Vol. 35; no. 4; pp. 895 - 918
Main Authors: Kumar, Ashok, Arputharaj, Vijay, Sathya, V., Kumar, Dalvin, Sundararajan, Shanmugam, Sivanantham, V., Kumar Pal, Sanjoy
Format: Journal Article
Language:English
Published: University of Belgrade 01.01.2025
Subjects:
ISSN:0354-0243, 1820-743X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Researchers have been leveraging various data analytics methods for Diabetes mellitus (DM) diagnosis, prognosis and management. The data analytics paradigm has become advanced and automated with the emergence of machine learning (ML) and deep learning (DL) algorithms. With new techniques, the prediction accuracy of ML models for various real-world problems has increased significantly. In our previous work, we introduced and investigated the Improved K-Means with Adaptive Divergence Weight Binary Bat Algorithm to create an innovative diagnosis system. Across several problem scenarios, the performance of this algorithm is much better in terms of speed. However, this algorithm's accuracy of data categorization comes below expectations. To achieve high classification accuracy, the objective of this study work is to concentrate on methods and strategies. This aim is fulfilled through a Support Vector Machine (SVM) with an Enhanced Levy Flight-based Fruitfly Optimization model. This novel model improves diabetes prediction accuracy and can be applied to regressions, classifications, and other tasks. The nearest training data points? distances should be greater as this can lower classifiers? generalization errors. Missing values in datasets are retrieved using the Adaptive Neuro Fuzzy Inference System (ANFIS). A new algorithm called the Enhanced Inertia Weight Binary Bat Algorithm (EIWBBA) is introduced to optimize feature spaces and eliminate unimportant aspects. Further on, a novel feature selection technique is introduced by using the Enhanced Generalized Lambda Distribution Independent Component Analysis (EGLD-ICA). The classification uses a Support Vector Machine with an Enhanced Levy flight-based Fruitfly Optimization Algorithm (SVM-ELFFOA). The SVM-ELFFOA classification techniques are implemented using MATLAB software. It is evident that the discussed IKM-EIWBBA+SVM-ELFFOA classifier produces much better values of the accuracy of 93.50%, while the available IKM-EIWBBA+SVM yields 91.87%, IKM-ADWFA+LR renders 90.50%, and IKM+LR renders just 85.00%. From the simulation experiment, the proposed classification techniques implemented in MATLAB software and according to comparative data, this suggested model has a higher prediction accuracy of 93.50% compared to existing classification methods.
AbstractList Researchers have been leveraging various data analytics methods for Diabetes mellitus (DM) diagnosis, prognosis and management. The data analytics paradigm has become advanced and automated with the emergence of machine learning (ML) and deep learning (DL) algorithms. With new techniques, the prediction accuracy of ML models for various real-world problems has increased significantly. In our previous work, we introduced and investigated the Improved K-Means with Adaptive Divergence Weight Binary Bat Algorithm to create an innovative diagnosis system. Across several problem scenarios, the performance of this algorithm is much better in terms of speed. However, this algorithm's accuracy of data categorization comes below expectations. To achieve high classification accuracy, the objective of this study work is to concentrate on methods and strategies. This aim is fulfilled through a Support Vector Machine (SVM) with an Enhanced Levy Flight-based Fruitfly Optimization model. This novel model improves diabetes prediction accuracy and can be applied to regressions, classifications, and other tasks. The nearest training data points’ distances should be greater as this can lower classifiers’ generalization errors. Missing values in datasets are retrieved using the Adaptive Neuro Fuzzy Inference System (ANFIS). A new algorithm called the Enhanced Inertia Weight Binary Bat Algorithm (EIWBBA) is introduced to optimize feature spaces and eliminate unimportant aspects. Further on, a novel feature selection technique is introduced by using the Enhanced Generalized Lambda Distribution Independent Component Analysis (EGLD-ICA). The classification uses a Support Vector Machine with an Enhanced Levy flight-based Fruitfly Optimization Algorithm (SVM-ELFFOA). The SVM-ELFFOA classification techniques are implemented using MATLAB software. It is evident that the discussed IKM-EIWBBA+SVM-ELFFOA classifier produces much better values of the accuracy of 93.50%, while the available IKM-EIWBBA+SVM yields 91.87%, IKM-ADWFA+LR renders 90.50%, and IKM+LR renders just 85.00%. From the simulation experiment, the proposed classification techniques implemented in MATLAB software and according to comparative data, this suggested model has a higher prediction accuracy of 93.50% compared to existing classification methods.
Author Kumar Pal, Sanjoy
Sathya, V.
Arputharaj, Vijay
Kumar, Ashok
Kumar, Dalvin
Sundararajan, Shanmugam
Sivanantham, V.
Author_xml – sequence: 1
  givenname: Ashok
  orcidid: 0000-0001-6869-4975
  surname: Kumar
  fullname: Kumar, Ashok
  organization: Computer Science and Software Engineering, Skyline University Nigeria, Kano City, Kano State, Nigeria
– sequence: 2
  givenname: Vijay
  orcidid: 0000-0002-3842-5835
  surname: Arputharaj
  fullname: Arputharaj, Vijay
  organization: Department of Computer Science, CHRIST (Deemed to be University), Bangalore, India
– sequence: 3
  givenname: V.
  orcidid: 0009-0006-1724-5647
  surname: Sathya
  fullname: Sathya, V.
  organization: Department of Computer Science, Navarasam college of Arts and Science, Erode, Tamilnadu, India
– sequence: 4
  givenname: Dalvin
  orcidid: 0000-0003-0768-3097
  surname: Kumar
  fullname: Kumar, Dalvin
  organization: Department of Statistics and Data Science, Christ University, Bangalore, India
– sequence: 5
  givenname: Shanmugam
  orcidid: 0000-0001-9712-6635
  surname: Sundararajan
  fullname: Sundararajan, Shanmugam
  organization: Department of Economics and Entrepreneurship, Skyline University Nigeria, Kano City, Kano State, Nigeria
– sequence: 6
  givenname: V.
  orcidid: 0009-0003-1985-1163
  surname: Sivanantham
  fullname: Sivanantham, V.
  organization: Department of Computer Science, Periyar University, Salem, India
– sequence: 7
  givenname: Sanjoy
  orcidid: 0000-0003-1436-6380
  surname: Kumar Pal
  fullname: Kumar Pal, Sanjoy
  organization: Department of Biological Sciences SSIT, Skyline University Nigeria Kano City, Kano State, Nigeria
BookMark eNpVkV9LHDEUxUNR6FZ97XO-wNj8m83Mo0itFkERBX0a7tzc7KbMToYka1m_il_WqVsEny4cuL9zDucbOxjjSIx9l-JUqbb58fT75k4ZsZS1EPLsC1vIRonKGv14wBZC16YSyuiv7CTn0AtpddOoulmw19tELmAJceTR87KbiCvuAvRUKPNtDuOK5-00xVT4M2GJiW8A12Ek_jeUNadxDSOS4wM977gfwmpdeA95Vi7SNhQ_7HicStiEF3h3gWEV0_y54TA67gnKNhHPNNA-BUxTirMD5WN26GHIdPL_HrGHi5_355fV9c2vq_Oz6wqVtFA5B4ps7x1JELrRrQYnVG1Eu2ydVigteg0erEMwPSrvG6kEmQaXplYo9BG72nNdhD_dlMIG0q6LELp3IaZVB6kEHKizAm1LSs28pQHUPUKL1ou5BgAZN7NO9yxMMedE_oMnRfdvqe7zUvoNWZWN_w
Cites_doi 10.61356/j.nswa.2023.75
10.1016/j.procs.2018.05.122
10.4066/biomedicalresearch.29-17-254
10.1016/S0893-6080(00)00026-5
10.1016/j.cell.2018.02.010
10.61356/SMIJ.2024.8300
10.61185/SMIJ.2023.55103
10.1016/j.knosys.2011.07.001
10.1016/j.ophtha.2017.02.008
10.17485/ijst/2016/v9i43/93874
10.1023/A:1012450327387
10.6000/1927-5129.2017.13.77
10.61356/j.mawa.2024.26961
10.1055/s-0034-1366278
10.2337/dc14-S081
10.2337/diacare.26.11.3160
10.47097/piar.1573999
10.1007/s41870-023-01679-9
10.1186/s40537-019-0175-6
10.3389/fgene.2018.00515
10.1016/j.imu.2017.12.006
10.1109/ICACC.2015.61
10.1155/2017/3235720
10.1016/j.procs.2015.03.182
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2298/YJOR240615001A
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 1820-743X
EndPage 918
ExternalDocumentID oai_doaj_org_article_70c79e223af64ac3bca9c7f0feaaae4d
10_2298_YJOR240615001A
GroupedDBID AAYXX
ABJBX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c217a-dda2e7bfde1a038393ad02540969d32c17cf3afa7dca4bc2ff8120e48c6452c03
IEDL.DBID DOA
ISSN 0354-0243
IngestDate Mon Dec 01 19:25:53 EST 2025
Thu Nov 20 00:47:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217a-dda2e7bfde1a038393ad02540969d32c17cf3afa7dca4bc2ff8120e48c6452c03
ORCID 0000-0001-6869-4975
0000-0001-9712-6635
0000-0003-0768-3097
0000-0002-3842-5835
0009-0006-1724-5647
0000-0003-1436-6380
0009-0003-1985-1163
OpenAccessLink https://doaj.org/article/70c79e223af64ac3bca9c7f0feaaae4d
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_70c79e223af64ac3bca9c7f0feaaae4d
crossref_primary_10_2298_YJOR240615001A
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Yugoslav Journal of Operations Research
PublicationYear 2025
Publisher University of Belgrade
Publisher_xml – name: University of Belgrade
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
– ident: ref39
– ident: ref26
  doi: 10.61356/j.nswa.2023.75
– ident: ref10
  doi: 10.1016/j.procs.2018.05.122
– ident: ref22
– ident: ref25
– ident: ref32
  doi: 10.4066/biomedicalresearch.29-17-254
– ident: ref35
  doi: 10.1016/S0893-6080(00)00026-5
– ident: ref19
– ident: ref9
  doi: 10.1016/j.cell.2018.02.010
– ident: ref11
– ident: ref29
  doi: 10.61356/SMIJ.2024.8300
– ident: ref27
  doi: 10.61185/SMIJ.2023.55103
– ident: ref37
  doi: 10.1016/j.knosys.2011.07.001
– ident: ref38
– ident: ref8
  doi: 10.1016/j.ophtha.2017.02.008
– ident: ref15
  doi: 10.17485/ijst/2016/v9i43/93874
– ident: ref36
  doi: 10.1023/A:1012450327387
– ident: ref18
  doi: 10.6000/1927-5129.2017.13.77
– ident: ref28
  doi: 10.61356/j.mawa.2024.26961
– ident: ref4
  doi: 10.1055/s-0034-1366278
– ident: ref21
– ident: ref23
– ident: ref2
  doi: 10.2337/dc14-S081
– ident: ref3
  doi: 10.2337/diacare.26.11.3160
– ident: ref24
  doi: 10.47097/piar.1573999
– ident: ref20
  doi: 10.1007/s41870-023-01679-9
– ident: ref17
  doi: 10.1186/s40537-019-0175-6
– ident: ref6
  doi: 10.3389/fgene.2018.00515
– ident: ref7
  doi: 10.2337/dc14-S081
– ident: ref30
  doi: 10.1016/j.imu.2017.12.006
– ident: ref16
– ident: ref13
  doi: 10.1109/ICACC.2015.61
– ident: ref34
  doi: 10.1155/2017/3235720
– ident: ref12
– ident: ref33
– ident: ref5
  doi: 10.1016/j.procs.2015.03.182
– ident: ref14
– ident: ref31
SSID ssib017388258
ssib048656891
ssib044765231
Score 2.3109884
Snippet Researchers have been leveraging various data analytics methods for Diabetes mellitus (DM) diagnosis, prognosis and management. The data analytics paradigm has...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 895
SubjectTerms adaptive neuro-fuzzy inference system
diabetes mellitus prediction
enhanced generalized lambda distribution independent component analysis
enhanced inertia weight binary bat algorithm
k-means algorithm
Title Prediction of type 2 diabetes using support vector machine with enhanced levy flight based Fruitfly optimization algorithm and feature selection approaches
URI https://doaj.org/article/70c79e223af64ac3bca9c7f0feaaae4d
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1820-743X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044765231
  issn: 0354-0243
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6CeMglJESJiZE6CJ4Ge3t6t7uPRlyCGBUxwZyGmn4YYXdWZh_gJX_EP2tVz5isp1xymcO8GL6prnd_JcS-cSG5YOtCJs_ZKkdLaqRjEYeaHNRkQp1T2T_OzPm5vblxl2ujvrgnrKMH7oA7NNIbF8mIYRpp9GXt0XmTZIqIGHVg7SuNWwumSJIGpiTP8W-9T2szGq7Vu7QlN6Yfp1cOdcG0fB2jo1LOHv48vbjKlm5ISvzohcVaI_bPFmj8VrzpXUc46j75nXgVm_fi8bLlUgvDC7MEnFEFBc8ZVeC29luYL-_ZzYZVTtHDNDdQRuAcLMTmV24CgElcPUCacLAObNsCjNvl3SJNHmBGemXab9gEnNzOWnpyCtgEIIC4BgHzPE8nX-9ZyuN8S3wfn1wffy36gQuFp8gEixBQRVOnEAcoKXR1JQbeLU9hjgul8gPjE_0HNMGjrr1KidwDGbX1XB71stwWG82siR8EWBtKqdDwitcok7UleXYJtfOjoHTaEQfPoFb3Ha9GRfEIw1-9hH9HfGHM_9zFfNj5BElJ1UtJ9S8p-fg_XvJJvFY8_TcnYHbFxqJdxs9i068Wd_N2LwsgHb_9PnkChXLjCA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+type+2+diabetes+using+support+vector+machine+with+enhanced+levy+flight+based+Fruitfly+optimization+algorithm+and+feature+selection+approaches&rft.jtitle=Yugoslav+Journal+of+Operations+Research&rft.au=Kumar%2C+Ashok&rft.au=Arputharaj%2C+Vijay&rft.au=Sathya%2C+V.&rft.au=Kumar%2C+Dalvin&rft.date=2025-01-01&rft.issn=0354-0243&rft.eissn=1820-743X&rft.volume=35&rft.issue=4&rft.spage=895&rft.epage=918&rft_id=info:doi/10.2298%2FYJOR240615001A&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_YJOR240615001A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0354-0243&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0354-0243&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0354-0243&client=summon