Deep learning models for detection of explosive ordnance using autonomous robotic systems: trade-off between accuracy and real-time processing speed
The study focuses on deep learning models for real-time explosive ordnance detection (EO). This study aimed to evaluate and compare the performance of YOLOv8 and RT-DETR object detection models in terms of accuracy and speed for EO detection via autonomous robotic systems. The objectives are as foll...
Uložené v:
| Vydané v: | Radìoelektronnì ì komp'ûternì sistemi (Online) Ročník 2024; číslo 4; s. 99 - 111 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
National Aerospace University «Kharkiv Aviation Institute
21.11.2024
|
| Predmet: | |
| ISSN: | 1814-4225, 2663-2012 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!