Machine Learning Meliorates Computing and Robustness in Discrete Combinatorial Optimization Problems

Discrete combinatorial optimization problems in real world are typically defined via an ensemble of potentially high dimensional measurements pertaining to all subjects of a system under study. We point out that such a data ensemble in fact embeds with system's information content that is not d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in applied mathematics and statistics Jg. 2
Hauptverfasser: Hsieh, Fushing, Fujii, Kevin, Hsieh, Cho-Jui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 01.11.2016
Schlagworte:
ISSN:2297-4687, 2297-4687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Discrete combinatorial optimization problems in real world are typically defined via an ensemble of potentially high dimensional measurements pertaining to all subjects of a system under study. We point out that such a data ensemble in fact embeds with system's information content that is not directly used in defining the combinatorial optimization problems. Can machine learning algorithms extract such information content and make combinatorial optimizing tasks more efficient? Would such algorithmic computations bring new perspectives into this classic topic of Applied Mathematics and Theoretical Computer Science? We show that answers to both questions are positive. One key reason is due to permutation invariance. That is, the data ensemble of subjects' measurement vectors is permutation invariant when it is represented through a subject-vs-measurement matrix. An unsupervised machine learning algorithm, called Data Mechanics (DM), is applied to find optimal permutations on row and column axes such that the permuted matrix reveals coupled deterministic and stochastic structures as the system's information content. The deterministic structures are shown to facilitate geometry-based divide-and-conquer scheme that helps optimizing task, while stochastic structures are used to generate an ensemble of mimicries retaining the deterministic structures, and then reveal the robustness pertaining to the original version of optimal solution. Two simulated systems, Assignment problem and Traveling Salesman problem, are considered. Beyond demonstrating computational advantages and intrinsic robustness in the two systems, we propose brand new robust optimal solutions. We believe such robust versions of optimal solutions are potentially more realistic and practical in real world settings.
AbstractList Discrete combinatorial optimization problems in real world are typically defined via an ensemble of potentially high dimensional measurements pertaining to all subjects of a system under study. We point out that such a data ensemble in fact embeds with system's information content that is not directly used in defining the combinatorial optimization problems. Can machine learning algorithms extract such information content and make combinatorial optimizing tasks more efficient? Would such algorithmic computations bring new perspectives into this classic topic of Applied Mathematics and Theoretical Computer Science? We show that answers to both questions are positive. One key reason is due to permutation invariance. That is, the data ensemble of subjects' measurement vectors is permutation invariant when it is represented through a subject-vs-measurement matrix. An unsupervised machine learning algorithm, called Data Mechanics (DM), is applied to find optimal permutations on row and column axes such that the permuted matrix reveals coupled deterministic and stochastic structures as the system's information content. The deterministic structures are shown to facilitate geometry-based divide-and-conquer scheme that helps optimizing task, while stochastic structures are used to generate an ensemble of mimicries retaining the deterministic structures, and then reveal the robustness pertaining to the original version of optimal solution. Two simulated systems, Assignment problem and Traveling Salesman problem, are considered. Beyond demonstrating computational advantages and intrinsic robustness in the two systems, we propose brand new robust optimal solutions. We believe such robust versions of optimal solutions are potentially more realistic and practical in real world settings.
Author Hsieh, Fushing
Fujii, Kevin
Hsieh, Cho-Jui
Author_xml – sequence: 1
  givenname: Fushing
  surname: Hsieh
  fullname: Hsieh, Fushing
– sequence: 2
  givenname: Kevin
  surname: Fujii
  fullname: Fujii, Kevin
– sequence: 3
  givenname: Cho-Jui
  surname: Hsieh
  fullname: Hsieh, Cho-Jui
BookMark eNpNkE1LAzEURYMoWGvXbucPtCaTmUmylPoJlYroOrxJXmrKTFKS6UJ_vR0r4updLpcD71yQ0xADEnLF6IJzqa4d9HlRUtYsKKUlPSGTslRiXjVSnP7L52SW8_YwYVJIJcSE2GcwHz5gsUJIwYdN8YydjwkGzMUy9rv9MJYQbPEa230eAuZc-FDc-mwSDjiOWh9giMlDV6x3g-_9Fww-huIlxbbDPl-SMwddxtnvnZL3-7u35eN8tX54Wt6s5qZkgs6hpiAUY60yXErRIGWtZdK1ltvWKWetcAJlI5VUilfAXWMOz9ZcqVrUtOJT8nTk2ghbvUu-h_SpI3j9U8S00ZAGbzrUVW2VkVVpjGgqRVFBC5ZarIRDZRwcWNdHlkkx54Tuj8eoHp3r0bkenesf5_wbJ2Z4mQ
Cites_doi 10.1287/moor.2.3.209
10.1017/CBO9780511814068
10.1063/1.1703773
10.1142/0271
10.1007/s10955-014-1043-6
10.1103/PhysRevE.82.061110
10.1007/978-1-4757-3860-5
10.1137/0105003
10.1038/nphys2190
10.1007/s00453-009-9340-1
10.1198/016214504000001303
10.1126/science.220.4598.671
10.1371/journal.pone.0106154
10.1145/321105.321111
10.1016/j.ejor.2007.11.062
10.1090/S0273-0979-03-00975-3
10.5486/PMD.1959.6.3-4.12
10.1002/nav.3800020109
10.1109/iccvw.2009.5457690
10.1145/290179.290180
10.1137/1.9781611972238
10.1371/journal.pone.0056259
10.1017/S0963548310000039
10.1016/0304-3975(77)90012-3
10.3389/fams.2016.00009
10.1088/0305-4470/36/12/201
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fams.2016.00020
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ, Directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2297-4687
ExternalDocumentID oai_doaj_org_article_45d9c842cc76490e9abad0de47fe9cfa
10_3389_fams_2016_00020
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IPNFZ
KQ8
M~E
OK1
RIG
ID FETCH-LOGICAL-c2170-a50a7911b9c38876e01bd18fbd3dbf9fdd7f7e868989934a3f6c0205399575043
IEDL.DBID DOA
ISSN 2297-4687
IngestDate Fri Oct 03 12:50:36 EDT 2025
Sat Nov 29 01:54:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2170-a50a7911b9c38876e01bd18fbd3dbf9fdd7f7e868989934a3f6c0205399575043
OpenAccessLink https://doaj.org/article/45d9c842cc76490e9abad0de47fe9cfa
ParticipantIDs doaj_primary_oai_doaj_org_article_45d9c842cc76490e9abad0de47fe9cfa
crossref_primary_10_3389_fams_2016_00020
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Frontiers in applied mathematics and statistics
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Papadimitriou (B5) 1977; 4
Fushing (B22) 2014; 9
Burkard (B3) 2012
Mémoli (B36) 2009
Li (B26) 1993
Chen (B32) 2005; 100
Rissanen (B25) 1989
Kapp (B15) 1977; 2
Fushing (B35) 2016; 2
Si (B29) 2014
Erdos (B17) 1959; 6
Arora (B6) 1998; 45
Bollob1s (B18) 2001
Fushing (B23) 2015; 12
Hsieh (B28) 2012
Kuhn (B1) 1955; 2
Mehta (B11) 2004
Parisi (B13) 1998
Lawler (B7) 1985
Dyson (B19) 1962; 3
Mackey (B30) 2011
Fushing (B20) 2010; 82
Diaconis (B9) 2003; 40
Kirkpatrick (B16) 1983; 220
Barvinok (B33) 2010; 19
Fushing (B34) 2014; 156
Applegate (B8) 2006
Bayati (B31) 2010; 58
Krokhmal (B14) 2009; 194
Munkres (B2) 1957; 5
Hsieh (B27) 2014
Mezard (B12) 1986
Fushing (B21) 2013; 8
Forrester (B10) 2003; 36
Crutchfield (B24) 2012; 8
Bellman (B4) 1962; 9
References_xml – volume: 2
  start-page: 209
  year: 1977
  ident: B15
  article-title: Probabilistic analysis of partitioning algoritms for the TSP in the plane
  publication-title: Math Oper. Res.
  doi: 10.1287/moor.2.3.209
– volume-title: Random Graphs, 2nd Edn
  year: 2001
  ident: B18
  doi: 10.1017/CBO9780511814068
– volume: 3
  start-page: 140
  year: 1962
  ident: B19
  article-title: Statistical theory of the energy levels of complex systems-I
  publication-title: J Math Phys.
  doi: 10.1063/1.1703773
– volume-title: Stochastic Complexity and Statistical Inquiry
  year: 1989
  ident: B25
– volume-title: Spin Glass Theory and Beyond.
  year: 1986
  ident: B12
  doi: 10.1142/0271
– volume: 156
  start-page: 823
  year: 2014
  ident: B34
  article-title: Bootstrapping on undirected binary network via statistical mechanics
  publication-title: J Stat Phys.
  doi: 10.1007/s10955-014-1043-6
– volume: 82
  start-page: 061110
  year: 2010
  ident: B20
  article-title: Time, temperature and data cloud geometry
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.82.061110
– volume-title: An Introduction to Kolmogorov Complexity and its Applications
  year: 1993
  ident: B26
  doi: 10.1007/978-1-4757-3860-5
– volume-title: The Traveling Salesman Problem.
  year: 2006
  ident: B8
– volume: 5
  start-page: 32
  year: 1957
  ident: B2
  article-title: Algorithms for the assignment and transportation problems
  publication-title: J Soc Indust Appl Math.
  doi: 10.1137/0105003
– volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: B29
  article-title: Multi-scale spectral decomposition of massive graphs
– volume: 8
  start-page: 17
  year: 2012
  ident: B24
  article-title: Between order and chaos
  publication-title: Nat Phys
  doi: 10.1038/nphys2190
– volume: 58
  start-page: 860
  year: 2010
  ident: B31
  article-title: A sequential algorithm for generating random graphs
  publication-title: Algorithmica
  doi: 10.1007/s00453-009-9340-1
– volume: 100
  start-page: 109
  year: 2005
  ident: B32
  article-title: Sequential Monte Carlo methods for statistical analysis of tables
  publication-title: J Am Stat Assoc.
  doi: 10.1198/016214504000001303
– volume: 220
  start-page: 671
  year: 1983
  ident: B16
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume-title: International Conference on Machine Learning
  year: 2014
  ident: B27
  article-title: A divide-and-conquer solver for kernel support vector machines
– volume: 12
  start-page: 20150753
  year: 2015
  ident: B23
  article-title: Unravelling the geometry of data matrices: effects of water stress regimes on winemaking
  publication-title: J R Soc Interface
  doi: 10.1371/journal.pone.0106154
– volume: 9
  start-page: 61
  year: 1962
  ident: B4
  article-title: Dynamic programming treatment of the travelling salesman problem
  publication-title: J Assoc Comput Mach.
  doi: 10.1145/321105.321111
– volume: 194
  start-page: 1
  year: 2009
  ident: B14
  article-title: Random assignment problems
  publication-title: Eur J Oper Res.
  doi: 10.1016/j.ejor.2007.11.062
– volume: 9
  start-page: e106154
  year: 2014
  ident: B22
  article-title: Data mechanics and coupling geometry on binary bipartite network
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0106154
– volume: 40
  start-page: 155
  year: 2003
  ident: B9
  article-title: Patterns in eigenvalues: the 70th Josiah Willard Gibbs Lecture
  publication-title: Bull Amer Math Soc.
  doi: 10.1090/S0273-0979-03-00975-3
– volume-title: 3rd Edn.
  year: 2004
  ident: B11
– year: 1998
  ident: B13
  article-title: A conjecture on random bipartite matching
– volume: 6
  start-page: 290
  year: 1959
  ident: B17
  article-title: On random graphs I
  publication-title: Publ Math Debrecen
  doi: 10.5486/PMD.1959.6.3-4.12
– volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: B28
  article-title: A divide-and-conquer method for sparse inverse covariance estimation
– volume: 2
  start-page: 83
  year: 1955
  ident: B1
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Res Logist Q.
  doi: 10.1002/nav.3800020109
– volume-title: The Traveling Salesman Problem.
  year: 1985
  ident: B7
– start-page: 256
  year: 2009
  ident: B36
  article-title: Spectral Gromov-Wasserstein distances for shape matching
  publication-title: Proc ICCV Workshops
  doi: 10.1109/iccvw.2009.5457690
– volume: 45
  start-page: 753
  year: 1998
  ident: B6
  article-title: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
  publication-title: J ACM
  doi: 10.1145/290179.290180
– volume-title: Assignment Problems (Revised reprint).
  year: 2012
  ident: B3
  doi: 10.1137/1.9781611972238
– volume: 8
  start-page: e56259
  year: 2013
  ident: B21
  article-title: Multi-scale clustering by building a robust and self-correcting ultrametric topology on data points
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056259
– volume: 19
  start-page: 517
  year: 2010
  ident: B33
  article-title: What does a random contingency table look like?
  publication-title: Combinator Probab Comput.
  doi: 10.1017/S0963548310000039
– volume: 4
  start-page: 237
  year: 1977
  ident: B5
  article-title: The euclidean traveling salesman problem is NP-complete
  publication-title: Theor Comput Sci.
  doi: 10.1016/0304-3975(77)90012-3
– volume: 2
  start-page: 9
  year: 2016
  ident: B35
  article-title: Mimicking directed binary networks for exploring systemic sensitivity: Is NCAA FBS a fragile competition system?
  publication-title: Front Appl Math Stat.
  doi: 10.3389/fams.2016.00009
– volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: B30
  article-title: Divide-and-conquer matrix factorization
– volume: 36
  start-page: R1
  year: 2003
  ident: B10
  article-title: Introduction in review to special issue on random matrix theory
  publication-title: J Phys A Math Gen.
  doi: 10.1088/0305-4470/36/12/201
SSID ssj0001878977
Score 1.9668841
Snippet Discrete combinatorial optimization problems in real world are typically defined via an ensemble of potentially high dimensional measurements pertaining to all...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms Assignment problem
Data Mechanics
netowk mimicking
robustness
Traveling salesman problem
Title Machine Learning Meliorates Computing and Robustness in Discrete Combinatorial Optimization Problems
URI https://doaj.org/article/45d9c842cc76490e9abad0de47fe9cfa
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ, Directory of open access journals
  customDbUrl:
  eissn: 2297-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001878977
  issn: 2297-4687
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2297-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001878977
  issn: 2297-4687
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmDhG1G-5IGBJWpSO7E9AmrFQCsGkLpF_kSVaIqSlpHfzp0TUDYWlgyWFTnvHPte4nuPkBtuDJAKXSROBJZwZ02imGaJLqTPggzOm6gz-yRmMzmfq-ee1ReeCWvlgVvghjx3yko-slYUXKVeaaNd6jwXwSsbYmqUCtUjU_HrihQSMptWywdYmBoGvUR17gz_PaTo7t3bhnpq_XFbmRyQvS4fpHftOA7Jlq-OyH6XG9LuzWuOiZvGU4-edjYPb3Tp37G8HlJFaqM1AzbqytF6ZTbNGpcwuqgolt3WkBljJ2DByLFhytEVLBXLrgaTdq4yzQl5nYxfHh6TziEhsSN0jNF5qgUsV0ZZBqtF4dPMuEwG45gzQQUHERBeFugRqRjXLBQWHh7VaHPUdWenZLtaVf6M0ByYonaZstZY7vORkd7kWktuVGYk4wNy-wNY-dEKYZRAIBDbErEtEdsyYjsg9wjobzdUsI4NENeyi2v5V1zP_-MmF2QXh9XWDl6S7XW98Vdkx36uF019HacMXKdf42_-1sz6
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Meliorates+Computing+and+Robustness+in+Discrete+Combinatorial+Optimization+Problems&rft.jtitle=Frontiers+in+applied+mathematics+and+statistics&rft.au=Hsieh%2C+Fushing&rft.au=Fujii%2C+Kevin&rft.au=Hsieh%2C+Cho-Jui&rft.date=2016-11-01&rft.issn=2297-4687&rft.eissn=2297-4687&rft.volume=2&rft_id=info:doi/10.3389%2Ffams.2016.00020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fams_2016_00020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-4687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-4687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-4687&client=summon