A Framework for Multiclass Contour Visualization

Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in mul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics Vol. 29; no. 1; pp. 1 - 10
Main Authors: Li, Sihang, Yu, Jiacheng, Li, Mingxuan, Liu, Le, Zhang, Xiaolong, Yuan, Xiaoru
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1077-2626, 1941-0506, 1941-0506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization.
AbstractList Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization.
Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization.Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization.
Author Zhang, Xiaolong
Yuan, Xiaoru
Li, Mingxuan
Yu, Jiacheng
Li, Sihang
Liu, Le
Author_xml – sequence: 1
  givenname: Sihang
  orcidid: 0000-0002-4816-7032
  surname: Li
  fullname: Li, Sihang
  organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China
– sequence: 2
  givenname: Jiacheng
  surname: Yu
  fullname: Yu, Jiacheng
  organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China
– sequence: 3
  givenname: Mingxuan
  surname: Li
  fullname: Li, Mingxuan
  organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China
– sequence: 4
  givenname: Le
  surname: Liu
  fullname: Liu, Le
  organization: School of Computer Science, Northwestern Polytechnical University, China
– sequence: 5
  givenname: Xiaolong
  orcidid: 0000-0003-0601-3905
  surname: Zhang
  fullname: Zhang, Xiaolong
  organization: College of Information Sciences and Technology, Pennsylvania State University, USA
– sequence: 6
  givenname: Xiaoru
  orcidid: 0000-0003-3630-3065
  surname: Yuan
  fullname: Yuan, Xiaoru
  organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36194705$$D View this record in MEDLINE/PubMed
BookMark eNpdkE1PwzAMhiM0xD7gByAkVIkLlw4nadPmOFVsIA1xmXaNssyVOtpmJK0Q_HoybezAyT48tl8_YzJobYuE3FKYUgryabUuFlMGjE05A5nk7IKMqExoDCmIQeghy2ImmBiSsfc7AJokubwiQy4ClkE6IjCL5k43-GXdR1RaF731dVeZWnsfFbbtbO-ideV7XVc_uqtse00uS117vDnVCVnNn1fFS7x8X7wWs2VsGBVdvJUSOEemBdMcZLoFkzNjkOZZbnSZclaGBGUpBIBAnm90mqBBgSKjGQKfkMfj2r2znz36TjWVN1jXukXbe8WycIbnkNGAPvxDdyF1G8IFKk1kmvMQZULuT1S_aXCr9q5qtPtWfyoCQI-AcdZ7h-UZoaAOutVBtzroVifdYebuOFMh4pkPr0spKf8Fhzt4cQ
CODEN ITVGEA
Cites_doi 10.1109/TVCG.2012.238
10.1109/TVCG.2009.175
10.1111/cgf.12391
10.1109/TVCG.2019.2945960
10.1109/GMAG.2003.1219671
10.1080/13658816.2013.868466
10.1109/TVCG.2020.3030432
10.1109/TVCG.2018.2865139
10.1109/TVCG.2013.130
10.1109/TVCG.2009.122
10.1109/TVCG.2019.2934811
10.1109/TVCG.2010.144
10.1109/TVCG.2009.100
10.1109/TVCG.2017.2785807
10.1111/j.2153-3490.1955.tb01170.x
10.1109/TVCG.2013.143
10.1111/cgf.13440
10.1109/TVCG.2016.2599030
10.1109/TVCG.2014.2346322
10.1109/TVCG.2010.210
10.1109/TVCG.2010.154
10.1145/3313831.3376297
10.1109/TVCG.2019.2934667
10.1109/TVCG.2020.3030372
10.1109/TVCG.2013.65
10.1109/TVCG.2018.2864841
10.1137/1.9781611972801.37
10.1111/j.1467-8659.2009.01452.x
10.1109/TVCG.2018.2865141
10.1109/TVCG.2011.127
10.1109/TVCG.2017.2744184
10.1145/2077451.2077462
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2022.3209482
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 10
ExternalDocumentID 36194705
10_1109_TVCG_2022_3209482
9909991
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c216t-d99033e2a62a3095d0c82cce1878caf532f947ff66006e38ba54ece6e6717e03
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Sat Sep 27 21:36:42 EDT 2025
Sun Nov 09 07:22:37 EST 2025
Thu Apr 03 07:12:28 EDT 2025
Sat Nov 29 03:31:42 EST 2025
Wed Aug 27 02:29:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c216t-d99033e2a62a3095d0c82cce1878caf532f947ff66006e38ba54ece6e6717e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0601-3905
0000-0003-3630-3065
0000-0002-4816-7032
PMID 36194705
PQID 2754958303
PQPubID 75741
PageCount 10
ParticipantIDs proquest_miscellaneous_2721638071
ieee_primary_9909991
proquest_journals_2754958303
pubmed_primary_36194705
crossref_primary_10_1109_TVCG_2022_3209482
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
krizhevsky (ref13) 2009
ref14
van der maaten (ref33) 2008; 9
ref31
ref30
ref11
ref32
ref10
ruder (ref25) 2016; abs 1609 4747
malkai (ref19) 2021; abs 2103 2992
ref2
ref17
devlin (ref8) 0
ref38
ref16
ref18
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
anderson (ref1) 1995; 206
References_xml – ident: ref38
  doi: 10.1109/TVCG.2012.238
– ident: ref34
  doi: 10.1109/TVCG.2009.175
– ident: ref27
  doi: 10.1111/cgf.12391
– ident: ref37
  doi: 10.1109/TVCG.2019.2945960
– start-page: 4171
  year: 0
  ident: ref8
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies
– ident: ref20
  doi: 10.1109/GMAG.2003.1219671
– ident: ref29
  doi: 10.1080/13658816.2013.868466
– volume: 206
  year: 1995
  ident: ref1
  publication-title: Computational Fluid Dynamics
– ident: ref36
  doi: 10.1109/TVCG.2020.3030432
– ident: ref4
  doi: 10.1109/TVCG.2018.2865139
– ident: ref24
  doi: 10.1109/TVCG.2013.130
– ident: ref6
  doi: 10.1109/TVCG.2009.122
– ident: ref17
  doi: 10.1109/TVCG.2019.2934811
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref33
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– ident: ref10
  doi: 10.1109/TVCG.2010.144
– ident: ref18
  doi: 10.1109/TVCG.2009.100
– ident: ref22
  doi: 10.1109/TVCG.2017.2785807
– year: 2009
  ident: ref13
  publication-title: Learning multiple layers of features from tiny images
– ident: ref2
  doi: 10.1111/j.2153-3490.1955.tb01170.x
– ident: ref35
  doi: 10.1109/TVCG.2013.143
– ident: ref11
  doi: 10.1111/cgf.13440
– ident: ref28
  doi: 10.1109/TVCG.2016.2599030
– ident: ref5
  doi: 10.1109/TVCG.2014.2346322
– ident: ref23
  doi: 10.1109/TVCG.2010.210
– ident: ref3
  doi: 10.1109/TVCG.2010.154
– ident: ref14
  doi: 10.1145/3313831.3376297
– volume: abs 2103 2992
  year: 2021
  ident: ref19
  article-title: Clusterplot: High-dimensional cluster visualization
  publication-title: CoRR
– volume: abs 1609 4747
  year: 2016
  ident: ref25
  article-title: An overview of gradient descent optimization algorithms
  publication-title: CoRR
– ident: ref15
  doi: 10.1109/TVCG.2019.2934667
– ident: ref32
  doi: 10.1109/TVCG.2020.3030372
– ident: ref21
  doi: 10.1109/TVCG.2013.65
– ident: ref30
  doi: 10.1109/TVCG.2018.2864841
– ident: ref16
  doi: 10.1137/1.9781611972801.37
– ident: ref31
  doi: 10.1111/j.1467-8659.2009.01452.x
– ident: ref12
  doi: 10.1109/TVCG.2018.2865141
– ident: ref9
  doi: 10.1109/TVCG.2011.127
– ident: ref26
  doi: 10.1109/TVCG.2017.2744184
– ident: ref7
  doi: 10.1145/2077451.2077462
SSID ssj0014489
Score 2.389368
Snippet Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Computational fluid dynamics
Contour
Contours
Data visualization
Design parameters
Domain specific languages
domain-specific language
DSL
Filling
Image color analysis
Literature reviews
multiclass visualization
Task analysis
Visualization
visualization design
visualization framework
Weather forecasting
Title A Framework for Multiclass Contour Visualization
URI https://ieeexplore.ieee.org/document/9909991
https://www.ncbi.nlm.nih.gov/pubmed/36194705
https://www.proquest.com/docview/2754958303
https://www.proquest.com/docview/2721638071
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4VxAADr_IIlCpITIiAc05sZ6wqClPFUKFukWM7UpcW9cHv55ykEUgwsEWKZUdfLrnvu_P5AO4YxyIR2kSoRBaR_nKR0omJtFYWecpYYZOq2YQcj9V0mr114KGthXHOVZvP3KO_rHL5dmE2PlT2RH9Oz2d2YEdKUddqtRkDkhlZvb9QRkgsvclgxix7mrwPX0gJIj5yJDWj8IcPqpqq_M0vKz8zOvrfEx7DYcMnw0FtACfQcfNTOPh2ymAX2CAcbbdghcRRw6ro1njaHPrDqWiK8H228tWVdU3mGUxGz5Pha9Q0SogMxmIdWVqWc4daoObEmSwzCo1xsZLK6DLlWGaJLEtB7EY4rgqdJs444QSJOcf4OezOF3N3CWFi0BoiVaUUWcKlLQqbxQYFL-LSJpoFcL9FLv-oj8PIKxnBstzDnHuY8wbmALoeoXZgA04AvS3WefPBrHKUJFRTRQ41gNv2Npm6z1_ouVts_Bj07JFIUQAX9Ttq5-Y-GiNZevX7mtew7_vE17GTHuyulxt3A3vmcz1bLftkT1PVr-zpCyAPxWM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSD70d9VvAkVtNJmqbHRVwVdfGwiLeSJil42RV319_vpO0WBT14KzQk5Wva-b55ZADOGMdCSG0iVDKLSH-5SGlhIq2VRZ4wVlhRNZtI-331-po9z8FFWwvjnKuSz9ylv6xi-XZkpt5VdkV_Ts9n5mEhEQJZXa3VxgxIaGR1hmEaIfH0JoYZs-xq8HJ9S1oQ8ZIj6RmFP6xQ1Vblb4ZZWZre2v-ecR1WG0YZdustsAFzbrgJK9_OGdwC1g17sySskFhqWJXdGk-cQ388FU0RvryNfX1lXZW5DYPezeD6LmpaJUQGYzmJLC3LuUMtUXNiTZYZhca4WKXK6DLhWGYiLUtJ_EY6rgqdCGecdJLknGN8BzrD0dDtQSgMWkO0qkxlJnhqi8JmsUHJi7i0QrMAzmfI5e_1gRh5JSRYlnuYcw9z3sAcwJZHqB3YgBPA4QzrvPlkxjmmJFUTRSY1gNP2Nm12H8HQQzea-jHo-SPRogB263fUzs29PyZlyf7va57A0t3g6TF_vO8_HMCy7xpfe1IOoTP5mLojWDSfk7fxx3G1q74A6IHHwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Multiclass+Contour+Visualization&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Li%2C+Sihang&rft.au=Yu%2C+Jiacheng&rft.au=Li%2C+Mingxuan&rft.au=Liu%2C+Le&rft.date=2023-01-01&rft.eissn=1941-0506&rft.volume=29&rft.issue=1&rft.spage=353&rft_id=info:doi/10.1109%2FTVCG.2022.3209482&rft_id=info%3Apmid%2F36194705&rft.externalDocID=36194705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon