A fixed step distributed proximal gradient push‐pull algorithm based on integral quadratic constraint

In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal grad...

Full description

Saved in:
Bibliographic Details
Published in:Optimal control applications & methods Vol. 44; no. 5; pp. 2693 - 2707
Main Authors: Gao, Wenhua, Xie, Yibin, Ren, Hongwei
Format: Journal Article
Language:English
Published: Glasgow Wiley Subscription Services, Inc 01.09.2023
Subjects:
ISSN:0143-2087, 1099-1514
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal gradient Push‐Pull (PG‐Push‐Pull) algorithm. Firstly, the Integral Quadratic Constraint (IQC) suitable for proximal gradient Push‐Pull algorithm is given. When the smooth part of the objective function is strongly convex and the gradient satisfies the Lipchitz condition, the convergence of the algorithm is proved, and the convergence analysis is transformed into solving a linear matrix inequality by using this IQC framework. Its feasibility can ensure that the proposed algorithm has linear convergence rate, which is the same as that of Push‐Pull gradient algorithm. Then, the upper bound of convergence rate can be found by solving a Non‐Linear Programming problem. Finally, an example is given to analyze the upper bound of the convergence rate and verify the effectiveness of the proposed algorithm.
AbstractList In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal gradient Push‐Pull (PG‐Push‐Pull) algorithm. Firstly, the Integral Quadratic Constraint (IQC) suitable for proximal gradient Push‐Pull algorithm is given. When the smooth part of the objective function is strongly convex and the gradient satisfies the Lipchitz condition, the convergence of the algorithm is proved, and the convergence analysis is transformed into solving a linear matrix inequality by using this IQC framework. Its feasibility can ensure that the proposed algorithm has linear convergence rate, which is the same as that of Push‐Pull gradient algorithm. Then, the upper bound of convergence rate can be found by solving a Non‐Linear Programming problem. Finally, an example is given to analyze the upper bound of the convergence rate and verify the effectiveness of the proposed algorithm.
In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal gradient Push‐Pull (PG‐Push‐Pull) algorithm. Firstly, the Integral Quadratic Constraint (IQC) suitable for proximal gradient Push‐Pull algorithm is given. When the smooth part of the objective function is strongly convex and the gradient satisfies the Lipchitz condition, the convergence of the algorithm is proved, and the convergence analysis is transformed into solving a linear matrix inequality by using this IQC framework. Its feasibility can ensure that the proposed algorithm has linear convergence rate, which is the same as that of Push‐Pull gradient algorithm. Then, the upper bound of convergence rate can be found by solving a Non‐Linear Programming problem. Finally, an example is given to analyze the upper bound of the convergence rate and verify the effectiveness of the proposed algorithm.
Author Xie, Yibin
Gao, Wenhua
Ren, Hongwei
Author_xml – sequence: 1
  givenname: Wenhua
  orcidid: 0000-0002-6439-1915
  surname: Gao
  fullname: Gao, Wenhua
  organization: School of Mathematics South China University of Technology Guangzhou China
– sequence: 2
  givenname: Yibin
  surname: Xie
  fullname: Xie, Yibin
  organization: School of Mathematics South China University of Technology Guangzhou China
– sequence: 3
  givenname: Hongwei
  surname: Ren
  fullname: Ren, Hongwei
  organization: School of Automation Guangdong University of Petrochemical Technology Maoming China
BookMark eNotkM1KAzEQx4NUsK2CjxDw4mVrvnY3eyxFq1Dwoucln23KdrNNslBvPoLP6JOYUk8DMz_-M_ObgUnvewPAPUYLjBB58kosKELoCkwxapoCl5hNwBRhRguCeH0DZjHuM1BjSqZgu4TWnYyGMZkBahdTcHJMuTEEf3IH0cFtENqZPsFhjLvf759h7Doouq0PLu0OUIqYad9D1yeT2Q4eR6GDSE5B5fscKPLkFlxb0UVz91_n4PPl-WP1Wmze12-r5aZQBFepEEzZklW1qhGrKmtJaTg2TU2lxdSUNeFa01paZpiUWjLBkcGCoIYwiYVSdA4eLrn5_ONoYmr3fgx9XtkSXmUjJeE8U48XSgUfYzC2HUL-NXy1GLVnjW3W2J410j9Ee2ns
Cites_doi 10.1109/TAC.2008.2009515
10.1002/oca.2254
10.1137/17M1136845
10.1109/TCNS.2020.2988009
10.1109/ICCA.2019.8899565
10.1137/14096668X
10.1137/16M1084316
10.1109/TSMC.2017.2757265
10.1002/oca.2534
10.1002/oca.2136
10.1515/9781400873173
10.1109/ALLERTON.2017.8262874
10.1109/GLOCOM.2013.6831603
10.1109/9.587335
10.1016/j.ifacol.2019.12.181
10.1109/TAC.2020.2972824
10.1109/TSMC.2019.2933005
10.1109/TSP.2015.2461520
10.1109/TCNS.2017.2698261
10.1109/TAC.2014.2364096
10.1109/MSP.2020.2975210
10.1109/TIT.2015.2403263
10.1002/oca.2424
10.1109/TCYB.2018.2890140
10.1137/15M1009597
10.23919/ACC.2019.8815081
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/oca.3000
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1514
EndPage 2707
ExternalDocumentID 10_1002_oca_3000
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
7SP
8FD
ALUQN
JQ2
L7M
ID FETCH-LOGICAL-c216t-a4cf5467c70466ff25e81e973bf13e5728dd37bf4e4bbdb4a80e1a20924b1acc3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970719600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-2087
IngestDate Fri Jul 25 04:59:48 EDT 2025
Sat Nov 29 04:09:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c216t-a4cf5467c70466ff25e81e973bf13e5728dd37bf4e4bbdb4a80e1a20924b1acc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6439-1915
PQID 2861095288
PQPubID 1036362
PageCount 15
ParticipantIDs proquest_journals_2861095288
crossref_primary_10_1002_oca_3000
PublicationCentury 2000
PublicationDate 2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-00
PublicationDecade 2020
PublicationPlace Glasgow
PublicationPlace_xml – name: Glasgow
PublicationTitle Optimal control applications & methods
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
Bertsekas D (e_1_2_10_29_1) 2003
Chen A (e_1_2_10_16_1) 2012
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_8_1
  doi: 10.1109/TAC.2008.2009515
– ident: e_1_2_10_10_1
  doi: 10.1002/oca.2254
– ident: e_1_2_10_28_1
  doi: 10.1137/17M1136845
– ident: e_1_2_10_23_1
  doi: 10.1109/TCNS.2020.2988009
– ident: e_1_2_10_25_1
  doi: 10.1109/ICCA.2019.8899565
– ident: e_1_2_10_12_1
  doi: 10.1137/14096668X
– ident: e_1_2_10_26_1
  doi: 10.1137/16M1084316
– ident: e_1_2_10_9_1
  doi: 10.1109/TSMC.2017.2757265
– ident: e_1_2_10_3_1
  doi: 10.1002/oca.2534
– ident: e_1_2_10_5_1
  doi: 10.1002/oca.2136
– ident: e_1_2_10_27_1
  doi: 10.1515/9781400873173
– ident: e_1_2_10_21_1
  doi: 10.1109/ALLERTON.2017.8262874
– ident: e_1_2_10_18_1
  doi: 10.1109/GLOCOM.2013.6831603
– ident: e_1_2_10_20_1
  doi: 10.1109/9.587335
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ifacol.2019.12.181
– ident: e_1_2_10_15_1
  doi: 10.1109/TAC.2020.2972824
– ident: e_1_2_10_2_1
  doi: 10.1109/TSMC.2019.2933005
– ident: e_1_2_10_7_1
  doi: 10.1109/TSP.2015.2461520
– ident: e_1_2_10_13_1
  doi: 10.1109/TCNS.2017.2698261
– ident: e_1_2_10_14_1
  doi: 10.1109/TAC.2014.2364096
– ident: e_1_2_10_6_1
  doi: 10.1109/MSP.2020.2975210
– ident: e_1_2_10_17_1
  doi: 10.1109/TIT.2015.2403263
– ident: e_1_2_10_4_1
  doi: 10.1002/oca.2424
– ident: e_1_2_10_11_1
  doi: 10.1109/TCYB.2018.2890140
– volume-title: Fast distributed first‐order methods
  year: 2012
  ident: e_1_2_10_16_1
– ident: e_1_2_10_19_1
  doi: 10.1137/15M1009597
– volume-title: Convex analysis and optimization
  year: 2003
  ident: e_1_2_10_29_1
– ident: e_1_2_10_24_1
  doi: 10.23919/ACC.2019.8815081
SSID ssj0007132
Score 2.3046849
Snippet In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this...
In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 2693
SubjectTerms Algorithms
Convergence
Linear matrix inequalities
Linear programming
Mathematical analysis
Operators (mathematics)
Optimization
Upper bounds
Title A fixed step distributed proximal gradient push‐pull algorithm based on integral quadratic constraint
URI https://www.proquest.com/docview/2861095288
Volume 44
WOSCitedRecordID wos000970719600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007132
  issn: 0143-2087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE_NwICMxC4KJM7DzrIChlmgAaEZUVaRnThtpDaJ0nSmy_kEFnwhX8K1nVeHzbBgE1WRkig5p_dc29fnIvSGc1cqWyhbkhQGKBmXNqc8sMMk4jpliDjXzSbo2Rmbz6Ovk8mvbi_M5YoWBdvtouq_Qg3nAGy1dfYf4O5vCifgN4AOR4AdjrcCfmZl-Q7SSICvUusvpqWVVHYA5S5fAySLWtd5NVa13Sz7aocKBqMWXy3KOm-Wa0vJW2rpQkhtKLFS-y_TWhu8JiqpVL0l9ib2v0D0WWu7EVP9Pl4b1wwz3ar7JP4T19O032Wx3PbiMDfrJT9ykQ971ExoPC2LxZXMx_MUxOsLsYapSw-AauVVmnCr_EEh5_DH8dj4Qba8C8bBNTTNFFuhJtT0y_1LBIypLKQCbz3HcQah6xb3b-hfX5VoHJxJDFfG6so76IDQIGJTdPDh28nF517hYWBPTGmseaPO1Ngh77qn7qc5-yqvU5fzh-hBO-bAM8OVR2gii8fo_siJ8glazLBmDVaswSPW4I41uGMNVqz5ff1T8QX3fMGaL7gscMcX3PMFD3x5ii5OPp6_P7XbHhx2QtywsbmfZAGIaUIdPwyzjASSuTKinshcTwaUsDT1qMh86QuRCp8zR7qcODCsFy5PEu8ZmhZlIQ8Rll4kJIQEIZnnp24oYGBHREoh6QYVEOQIve4-WVwZq5X4JiRH6Lj7lnH7n9vEhKmeAQFh7PktbvEC3RvoeYymTb2VL9Hd5LLJN_WrFuo_0p-DHg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fixed+step+distributed+proximal+gradient+push%E2%80%90pull+algorithm+based+on+integral+quadratic+constraint&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Gao%2C+Wenhua&rft.au=Xie%2C+Yibin&rft.au=Ren%2C+Hongwei&rft.date=2023-09-01&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=44&rft.issue=5&rft.spage=2693&rft.epage=2707&rft_id=info:doi/10.1002%2Foca.3000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_oca_3000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon