A fixed step distributed proximal gradient push‐pull algorithm based on integral quadratic constraint
In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal grad...
Saved in:
| Published in: | Optimal control applications & methods Vol. 44; no. 5; pp. 2693 - 2707 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Glasgow
Wiley Subscription Services, Inc
01.09.2023
|
| Subjects: | |
| ISSN: | 0143-2087, 1099-1514 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal gradient Push‐Pull (PG‐Push‐Pull) algorithm. Firstly, the Integral Quadratic Constraint (IQC) suitable for proximal gradient Push‐Pull algorithm is given. When the smooth part of the objective function is strongly convex and the gradient satisfies the Lipchitz condition, the convergence of the algorithm is proved, and the convergence analysis is transformed into solving a linear matrix inequality by using this IQC framework. Its feasibility can ensure that the proposed algorithm has linear convergence rate, which is the same as that of Push‐Pull gradient algorithm. Then, the upper bound of convergence rate can be found by solving a Non‐Linear Programming problem. Finally, an example is given to analyze the upper bound of the convergence rate and verify the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal gradient Push‐Pull (PG‐Push‐Pull) algorithm. Firstly, the Integral Quadratic Constraint (IQC) suitable for proximal gradient Push‐Pull algorithm is given. When the smooth part of the objective function is strongly convex and the gradient satisfies the Lipchitz condition, the convergence of the algorithm is proved, and the convergence analysis is transformed into solving a linear matrix inequality by using this IQC framework. Its feasibility can ensure that the proposed algorithm has linear convergence rate, which is the same as that of Push‐Pull gradient algorithm. Then, the upper bound of convergence rate can be found by solving a Non‐Linear Programming problem. Finally, an example is given to analyze the upper bound of the convergence rate and verify the effectiveness of the proposed algorithm. In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this article uses the proximal operator to deal with the nonsmooth part of the objective function, and designs and analyzes the fixed step proximal gradient Push‐Pull (PG‐Push‐Pull) algorithm. Firstly, the Integral Quadratic Constraint (IQC) suitable for proximal gradient Push‐Pull algorithm is given. When the smooth part of the objective function is strongly convex and the gradient satisfies the Lipchitz condition, the convergence of the algorithm is proved, and the convergence analysis is transformed into solving a linear matrix inequality by using this IQC framework. Its feasibility can ensure that the proposed algorithm has linear convergence rate, which is the same as that of Push‐Pull gradient algorithm. Then, the upper bound of convergence rate can be found by solving a Non‐Linear Programming problem. Finally, an example is given to analyze the upper bound of the convergence rate and verify the effectiveness of the proposed algorithm. |
| Author | Xie, Yibin Gao, Wenhua Ren, Hongwei |
| Author_xml | – sequence: 1 givenname: Wenhua orcidid: 0000-0002-6439-1915 surname: Gao fullname: Gao, Wenhua organization: School of Mathematics South China University of Technology Guangzhou China – sequence: 2 givenname: Yibin surname: Xie fullname: Xie, Yibin organization: School of Mathematics South China University of Technology Guangzhou China – sequence: 3 givenname: Hongwei surname: Ren fullname: Ren, Hongwei organization: School of Automation Guangdong University of Petrochemical Technology Maoming China |
| BookMark | eNotkM1KAzEQx4NUsK2CjxDw4mVrvnY3eyxFq1Dwoucln23KdrNNslBvPoLP6JOYUk8DMz_-M_ObgUnvewPAPUYLjBB58kosKELoCkwxapoCl5hNwBRhRguCeH0DZjHuM1BjSqZgu4TWnYyGMZkBahdTcHJMuTEEf3IH0cFtENqZPsFhjLvf759h7Doouq0PLu0OUIqYad9D1yeT2Q4eR6GDSE5B5fscKPLkFlxb0UVz91_n4PPl-WP1Wmze12-r5aZQBFepEEzZklW1qhGrKmtJaTg2TU2lxdSUNeFa01paZpiUWjLBkcGCoIYwiYVSdA4eLrn5_ONoYmr3fgx9XtkSXmUjJeE8U48XSgUfYzC2HUL-NXy1GLVnjW3W2J410j9Ee2ns |
| Cites_doi | 10.1109/TAC.2008.2009515 10.1002/oca.2254 10.1137/17M1136845 10.1109/TCNS.2020.2988009 10.1109/ICCA.2019.8899565 10.1137/14096668X 10.1137/16M1084316 10.1109/TSMC.2017.2757265 10.1002/oca.2534 10.1002/oca.2136 10.1515/9781400873173 10.1109/ALLERTON.2017.8262874 10.1109/GLOCOM.2013.6831603 10.1109/9.587335 10.1016/j.ifacol.2019.12.181 10.1109/TAC.2020.2972824 10.1109/TSMC.2019.2933005 10.1109/TSP.2015.2461520 10.1109/TCNS.2017.2698261 10.1109/TAC.2014.2364096 10.1109/MSP.2020.2975210 10.1109/TIT.2015.2403263 10.1002/oca.2424 10.1109/TCYB.2018.2890140 10.1137/15M1009597 10.23919/ACC.2019.8815081 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/oca.3000 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1514 |
| EndPage | 2707 |
| ExternalDocumentID | 10_1002_oca_3000 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 7SP 8FD ALUQN JQ2 L7M |
| ID | FETCH-LOGICAL-c216t-a4cf5467c70466ff25e81e973bf13e5728dd37bf4e4bbdb4a80e1a20924b1acc3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970719600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-2087 |
| IngestDate | Fri Jul 25 04:59:48 EDT 2025 Sat Nov 29 04:09:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c216t-a4cf5467c70466ff25e81e973bf13e5728dd37bf4e4bbdb4a80e1a20924b1acc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6439-1915 |
| PQID | 2861095288 |
| PQPubID | 1036362 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2861095288 crossref_primary_10_1002_oca_3000 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Glasgow |
| PublicationPlace_xml | – name: Glasgow |
| PublicationTitle | Optimal control applications & methods |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 Bertsekas D (e_1_2_10_29_1) 2003 Chen A (e_1_2_10_16_1) 2012 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – ident: e_1_2_10_8_1 doi: 10.1109/TAC.2008.2009515 – ident: e_1_2_10_10_1 doi: 10.1002/oca.2254 – ident: e_1_2_10_28_1 doi: 10.1137/17M1136845 – ident: e_1_2_10_23_1 doi: 10.1109/TCNS.2020.2988009 – ident: e_1_2_10_25_1 doi: 10.1109/ICCA.2019.8899565 – ident: e_1_2_10_12_1 doi: 10.1137/14096668X – ident: e_1_2_10_26_1 doi: 10.1137/16M1084316 – ident: e_1_2_10_9_1 doi: 10.1109/TSMC.2017.2757265 – ident: e_1_2_10_3_1 doi: 10.1002/oca.2534 – ident: e_1_2_10_5_1 doi: 10.1002/oca.2136 – ident: e_1_2_10_27_1 doi: 10.1515/9781400873173 – ident: e_1_2_10_21_1 doi: 10.1109/ALLERTON.2017.8262874 – ident: e_1_2_10_18_1 doi: 10.1109/GLOCOM.2013.6831603 – ident: e_1_2_10_20_1 doi: 10.1109/9.587335 – ident: e_1_2_10_22_1 doi: 10.1016/j.ifacol.2019.12.181 – ident: e_1_2_10_15_1 doi: 10.1109/TAC.2020.2972824 – ident: e_1_2_10_2_1 doi: 10.1109/TSMC.2019.2933005 – ident: e_1_2_10_7_1 doi: 10.1109/TSP.2015.2461520 – ident: e_1_2_10_13_1 doi: 10.1109/TCNS.2017.2698261 – ident: e_1_2_10_14_1 doi: 10.1109/TAC.2014.2364096 – ident: e_1_2_10_6_1 doi: 10.1109/MSP.2020.2975210 – ident: e_1_2_10_17_1 doi: 10.1109/TIT.2015.2403263 – ident: e_1_2_10_4_1 doi: 10.1002/oca.2424 – ident: e_1_2_10_11_1 doi: 10.1109/TCYB.2018.2890140 – volume-title: Fast distributed first‐order methods year: 2012 ident: e_1_2_10_16_1 – ident: e_1_2_10_19_1 doi: 10.1137/15M1009597 – volume-title: Convex analysis and optimization year: 2003 ident: e_1_2_10_29_1 – ident: e_1_2_10_24_1 doi: 10.23919/ACC.2019.8815081 |
| SSID | ssj0007132 |
| Score | 2.3047802 |
| Snippet | In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this... In order to solve the distributed optimization problem with smooth + nonsmooth structure of the objective function on unbalanced directed networks, this... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 2693 |
| SubjectTerms | Algorithms Convergence Linear matrix inequalities Linear programming Mathematical analysis Operators (mathematics) Optimization Upper bounds |
| Title | A fixed step distributed proximal gradient push‐pull algorithm based on integral quadratic constraint |
| URI | https://www.proquest.com/docview/2861095288 |
| Volume | 44 |
| WOSCitedRecordID | wos000970719600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007132 issn: 0143-2087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE_NwICMxC4KJI4TO8sKGGYxGhCagbKK8rDbSG0SpenQJZ_Agi_kS7i28-qwGRZsoihSUjXn5D7se89F6JVSRMm4l9q-jLlN00DasZfC5x6HMYW0WVDdC_PljJ2f8_k8_DSZ_Op6Ya5WrCj4bhdW_xVquAZgq9bZf4C7fyhcgHMAHY4AOxxvBPzMkvkOwkiAr1L7L2aklVByAOUuXwMki1rXeTVWtd0s-2qHCpJRK14tyjpvlmtLubfM0oWQWlBipfovs1oLvKYqqFSzJfYW9j-C9VlruRFT_T7eG9cMM9Oq-yD-Q6yXab-KYrntncPc7Jd8y5N86FEzpvG0LBbfRT5epyBeX4g1LF16AFTrXoUxt0ofFGIOOrbHRg-y5Z0_Nq6BGabYOmrCzLzcv5yAEZWFUOC15zjO4Oi6zf1r_q-vSjQKziSCOyN15y10QJgf8ik6ePf55PKs9_CQ2BNTGmv-USdq7JA33a_uhzn7Xl6HLhf30b0258Azw5UHaCKKh-juSInyEVrMsGYNVqzBI9bgjjW4Yw1WrPn946fiC-75gjVfcFngji-45wse-PIYXZ68v3h7arczOOyUuEFjxzSVPjjTlDk0CKQkvuCuCJmXSNcTPiM8yzyWSCpokmQJjbkj3Jg4kNYnbpym3hM0LcpCHCIsnTBLZOAwSMkpE0EipCoCoAwy7ixk5Ai97F5ZVBmpleg6JEfouHuXUfvNbSLC1cwAn3D-9AaPeIbuDPQ8RtOm3orn6HZ61eSb-kUL9R8sdoIm |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fixed+step+distributed+proximal+gradient+push%E2%80%90pull+algorithm+based+on+integral+quadratic+constraint&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Gao%2C+Wenhua&rft.au=Xie%2C+Yibin&rft.au=Ren%2C+Hongwei&rft.date=2023-09-01&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=44&rft.issue=5&rft.spage=2693&rft.epage=2707&rft_id=info:doi/10.1002%2Foca.3000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_oca_3000 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon |