Modeling and solving a multi‐objective optimal portfolio of upstream oil and gas assets
This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets, considering factors such as scale and efficiency. The model takes into account the presence of nonlinear equations and integer constraints, and est...
Saved in:
| Published in: | Optimal control applications & methods Vol. 45; no. 3; pp. 1166 - 1181 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Glasgow
Wiley Subscription Services, Inc
01.05.2024
|
| Subjects: | |
| ISSN: | 0143-2087, 1099-1514 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets, considering factors such as scale and efficiency. The model takes into account the presence of nonlinear equations and integer constraints, and establishes a nonlinear multi‐objective mixed integer programming portfolio model for oil and gas. The weights of multiple objectives are determined using support vector machines. The optimization model incorporates the displacement transfer concept of particle swarm optimizer and the mutation operation of genetic algorithm using the transfer strategy of Gaussian particle swarm. The effectiveness of the model and algorithm is demonstrated through two examples. |
|---|---|
| AbstractList | This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets, considering factors such as scale and efficiency. The model takes into account the presence of nonlinear equations and integer constraints, and establishes a nonlinear multi‐objective mixed integer programming portfolio model for oil and gas. The weights of multiple objectives are determined using support vector machines. The optimization model incorporates the displacement transfer concept of particle swarm optimizer and the mutation operation of genetic algorithm using the transfer strategy of Gaussian particle swarm. The effectiveness of the model and algorithm is demonstrated through two examples. |
| Author | Yan, Wei |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-2042-5212 surname: Yan fullname: Yan, Wei organization: Research Institute of Petroleum Exploration and Development PetroChina Beijing P.R. China |
| BookMark | eNotkLFOwzAYhC1UJNqCxCNYYmFJ-W3HiTOiCgpSEQsMTJHj_KlSuXGwnUpsPALPyJOQtkx3w-lO983IpHMdEnLNYMEA-J0zeiGgkGdkyqAoEiZZOiFTYKlIOKj8gsxC2AJAzgSfko8XV6Ntuw3VXU2Ds_ujp7vBxvb3-8dVWzSx3SN1fWx32tLe-dg42zrqGjr0IXrUO-pae2zY6EB1CBjDJTlvtA149a9z8v748LZ8Stavq-fl_ToxnGUxUVUmNZeFZgZqlhvVCOSaKyy4FpVSogJj6qziwBTUBouMo2xUjSptdI25mJObU2_v3eeAIZZbN_hunCwFSJbnKc_lmLo9pYx3IXhsyt6Pd_xXyaA8gCtHcOUBnPgDc-1kUQ |
| Cites_doi | 10.1016/j.ins.2023.03.142 10.1016/j.energy.2017.10.083 10.1016/j.isatra.2017.12.004 10.1016/j.rser.2022.112937 10.1111/j.1540-6261.1952.tb01525.x 10.48084/etasr.2023 10.1016/j.engappai.2023.106004 10.1016/j.enpol.2019.111116 10.1016/j.engappai.2009.09.002 10.1016/j.resourpol.2020.101976 10.1109/ICNN.1995.488968 10.12677/JOGT.2019.415076 10.1016/j.swevo.2018.11.003 10.1023/A:1008202821328 10.1016/j.engappai.2009.09.011 10.1016/j.emj.2019.08.005 10.1002/oca.2404 10.1080/00207721.2011.555011 10.1109/TEVC.2009.2016569 10.1016/j.ins.2021.04.055 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/oca.3095 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1514 |
| EndPage | 1181 |
| ExternalDocumentID | 10_1002_oca_3095 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 7SP 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c216t-8b65a259a1c0d17c8f3e2a28e92a3b883b0ccd6b20180dce962e5f8de84fade73 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133219400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-2087 |
| IngestDate | Sun Nov 09 07:53:52 EST 2025 Sat Nov 29 04:09:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c216t-8b65a259a1c0d17c8f3e2a28e92a3b883b0ccd6b20180dce962e5f8de84fade73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2042-5212 |
| PQID | 3051774275 |
| PQPubID | 1036362 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3051774275 crossref_primary_10_1002_oca_3095 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-00 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Glasgow |
| PublicationPlace_xml | – name: Glasgow |
| PublicationTitle | Optimal control applications & methods |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | Fan R (e_1_2_8_29_1) 2005; 12 e_1_2_8_25_1 e_1_2_8_27_1 Angeline PJ (e_1_2_8_34_1) 1998; 7 Cristianini N (e_1_2_8_28_1) 2000 Li J (e_1_2_8_6_1) 2013; 805 e_1_2_8_3_1 Ali M (e_1_2_8_24_1) 2012; 217 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Rijnsburger M (e_1_2_8_26_1) 2017; 2017 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 Shi Y (e_1_2_8_31_1) 1999 Clerc M (e_1_2_8_32_1) 2002 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 12 start-page: 1889 year: 2005 ident: e_1_2_8_29_1 article-title: Working set selection using second order information for training SVM publication-title: J Mach Learn Res – start-page: 1945 year: 1999 ident: e_1_2_8_31_1 article-title: Empirical study of particle swarm optimization publication-title: Proc IEEE Congr Evol Comput – ident: e_1_2_8_21_1 doi: 10.1016/j.ins.2023.03.142 – ident: e_1_2_8_8_1 doi: 10.1016/j.energy.2017.10.083 – ident: e_1_2_8_10_1 doi: 10.1016/j.isatra.2017.12.004 – ident: e_1_2_8_27_1 doi: 10.1016/j.rser.2022.112937 – ident: e_1_2_8_2_1 doi: 10.1111/j.1540-6261.1952.tb01525.x – ident: e_1_2_8_11_1 doi: 10.48084/etasr.2023 – ident: e_1_2_8_25_1 doi: 10.1016/j.engappai.2023.106004 – ident: e_1_2_8_33_1 – volume: 805 start-page: 1103 year: 2013 ident: e_1_2_8_6_1 article-title: The empirical study of electricity market's financial risk assessment based on CVaR publication-title: Adv Mat Res – ident: e_1_2_8_4_1 – ident: e_1_2_8_7_1 – ident: e_1_2_8_14_1 doi: 10.1016/j.enpol.2019.111116 – ident: e_1_2_8_16_1 doi: 10.1016/j.engappai.2009.09.002 – ident: e_1_2_8_15_1 doi: 10.1016/j.resourpol.2020.101976 – ident: e_1_2_8_30_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_8_5_1 doi: 10.12677/JOGT.2019.415076 – volume-title: An Introduction to Support Vector Machines year: 2000 ident: e_1_2_8_28_1 – ident: e_1_2_8_19_1 doi: 10.1016/j.swevo.2018.11.003 – volume: 217 start-page: 404 year: 2012 ident: e_1_2_8_24_1 article-title: An efficient differential evolution based algorithm for solving multi‐objective optimization problems publication-title: Eur J Oper Res – ident: e_1_2_8_22_1 doi: 10.1023/A:1008202821328 – ident: e_1_2_8_35_1 – volume: 2017 start-page: 1 year: 2017 ident: e_1_2_8_26_1 article-title: Strategic portfolio management of upstream oil companies; based on a carbon‐constrained world and stranded oil reserves publication-title: Business – ident: e_1_2_8_17_1 doi: 10.1016/j.engappai.2009.09.011 – start-page: 1951 year: 2002 ident: e_1_2_8_32_1 article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization publication-title: Proc IEEE Congr Evol Comput – volume: 7 start-page: 601 year: 1998 ident: e_1_2_8_34_1 article-title: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences publication-title: Evol Program – ident: e_1_2_8_13_1 doi: 10.1016/j.emj.2019.08.005 – ident: e_1_2_8_12_1 doi: 10.1002/oca.2404 – ident: e_1_2_8_3_1 doi: 10.1080/00207721.2011.555011 – ident: e_1_2_8_9_1 – ident: e_1_2_8_23_1 – ident: e_1_2_8_18_1 doi: 10.1109/TEVC.2009.2016569 – ident: e_1_2_8_20_1 doi: 10.1016/j.ins.2021.04.055 |
| SSID | ssj0007132 |
| Score | 2.3278856 |
| Snippet | This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1166 |
| SubjectTerms | Genetic algorithms Integer programming Mixed integer Nonlinear equations Optimization models Support vector machines |
| Title | Modeling and solving a multi‐objective optimal portfolio of upstream oil and gas assets |
| URI | https://www.proquest.com/docview/3051774275 |
| Volume | 45 |
| WOSCitedRecordID | wos001133219400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007132 issn: 0143-2087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3NbtQwEMetsuVADxWfamlBRuK2CsR2EjtHBFQcUItQK9pTNHYctFWbrLpb1COPwDP2STqO7TRbcSgHLtEqKzuKf96ZsXf8H0LepgDCyYAnspZugWLzBLROXdVU0eRaWglNX2xC7u-r4-PyW0hiX_TlBGTbqqurcv5fUeM9hO2Ozv4D7qFTvIGfETpeETte7wXeVTc7i0cP8VH9jgH4zMEhtaHTp97STTu0GefuOBbG4U13Nutc-Hg5d2dI4HzazbyUwE9YTDHMtl73KUazB6FtzHcf_xvezylfn3oI20_8busPOxtvNvDsNrVv2H8UONrBR1pvM53IJwYO2dioeo3IMHnEyEIyVhQjb-vOvf7VkntlWPTn70Tqy3CuimXfcWJDaqGXYeYVtqxcywdkncu8VBOy_un73tHXwU3j6pz7_Fb_RlGZOOXv41NXY5VVV93HH4ePyWZYONAPHvgTsmbbp2RjJCf5jJxE9BSR0YCeAu3RX__-M0CnATodoNOuoRE6Reh9DwideujPydHe58OPX5JQOiMxnBXLROkiB1zZAjNpzaRRjbAcuLIlB6GVEjo1pi40d_pttbFlwW3eqNqqrIHaSvGCTNqutVuEArOSKwWKGZtZDF8ySI1iIGrBmCn1NnkTB6mae4WU6i6EbbIbR68KP5UFfpEzXHwgnZf36GKHPLqdkLtksry4tK_IQ_NrOVtcvA5wbwAyP2ff |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+solving+a+multi%E2%80%90objective+optimal+portfolio+of+upstream+oil+and+gas+assets&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Yan%2C+Wei&rft.date=2024-05-01&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=45&rft.issue=3&rft.spage=1166&rft.epage=1181&rft_id=info:doi/10.1002%2Foca.3095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_oca_3095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon |