Modeling and solving a multi‐objective optimal portfolio of upstream oil and gas assets

This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets, considering factors such as scale and efficiency. The model takes into account the presence of nonlinear equations and integer constraints, and est...

Full description

Saved in:
Bibliographic Details
Published in:Optimal control applications & methods Vol. 45; no. 3; pp. 1166 - 1181
Main Author: Yan, Wei
Format: Journal Article
Language:English
Published: Glasgow Wiley Subscription Services, Inc 01.05.2024
Subjects:
ISSN:0143-2087, 1099-1514
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets, considering factors such as scale and efficiency. The model takes into account the presence of nonlinear equations and integer constraints, and establishes a nonlinear multi‐objective mixed integer programming portfolio model for oil and gas. The weights of multiple objectives are determined using support vector machines. The optimization model incorporates the displacement transfer concept of particle swarm optimizer and the mutation operation of genetic algorithm using the transfer strategy of Gaussian particle swarm. The effectiveness of the model and algorithm is demonstrated through two examples.
AbstractList This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets, considering factors such as scale and efficiency. The model takes into account the presence of nonlinear equations and integer constraints, and establishes a nonlinear multi‐objective mixed integer programming portfolio model for oil and gas. The weights of multiple objectives are determined using support vector machines. The optimization model incorporates the displacement transfer concept of particle swarm optimizer and the mutation operation of genetic algorithm using the transfer strategy of Gaussian particle swarm. The effectiveness of the model and algorithm is demonstrated through two examples.
Author Yan, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-2042-5212
  surname: Yan
  fullname: Yan, Wei
  organization: Research Institute of Petroleum Exploration and Development PetroChina Beijing P.R. China
BookMark eNotkLFOwzAYhC1UJNqCxCNYYmFJ-W3HiTOiCgpSEQsMTJHj_KlSuXGwnUpsPALPyJOQtkx3w-lO983IpHMdEnLNYMEA-J0zeiGgkGdkyqAoEiZZOiFTYKlIOKj8gsxC2AJAzgSfko8XV6Ntuw3VXU2Ds_ujp7vBxvb3-8dVWzSx3SN1fWx32tLe-dg42zrqGjr0IXrUO-pae2zY6EB1CBjDJTlvtA149a9z8v748LZ8Stavq-fl_ToxnGUxUVUmNZeFZgZqlhvVCOSaKyy4FpVSogJj6qziwBTUBouMo2xUjSptdI25mJObU2_v3eeAIZZbN_hunCwFSJbnKc_lmLo9pYx3IXhsyt6Pd_xXyaA8gCtHcOUBnPgDc-1kUQ
Cites_doi 10.1016/j.ins.2023.03.142
10.1016/j.energy.2017.10.083
10.1016/j.isatra.2017.12.004
10.1016/j.rser.2022.112937
10.1111/j.1540-6261.1952.tb01525.x
10.48084/etasr.2023
10.1016/j.engappai.2023.106004
10.1016/j.enpol.2019.111116
10.1016/j.engappai.2009.09.002
10.1016/j.resourpol.2020.101976
10.1109/ICNN.1995.488968
10.12677/JOGT.2019.415076
10.1016/j.swevo.2018.11.003
10.1023/A:1008202821328
10.1016/j.engappai.2009.09.011
10.1016/j.emj.2019.08.005
10.1002/oca.2404
10.1080/00207721.2011.555011
10.1109/TEVC.2009.2016569
10.1016/j.ins.2021.04.055
ContentType Journal Article
Copyright 2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/oca.3095
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1514
EndPage 1181
ExternalDocumentID 10_1002_oca_3095
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
7SP
8FD
JQ2
L7M
ID FETCH-LOGICAL-c216t-8b65a259a1c0d17c8f3e2a28e92a3b883b0ccd6b20180dce962e5f8de84fade73
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133219400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-2087
IngestDate Sun Nov 09 07:53:52 EST 2025
Sat Nov 29 04:09:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c216t-8b65a259a1c0d17c8f3e2a28e92a3b883b0ccd6b20180dce962e5f8de84fade73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2042-5212
PQID 3051774275
PQPubID 1036362
PageCount 16
ParticipantIDs proquest_journals_3051774275
crossref_primary_10_1002_oca_3095
PublicationCentury 2000
PublicationDate 2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-00
PublicationDecade 2020
PublicationPlace Glasgow
PublicationPlace_xml – name: Glasgow
PublicationTitle Optimal control applications & methods
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References Fan R (e_1_2_8_29_1) 2005; 12
e_1_2_8_25_1
e_1_2_8_27_1
Angeline PJ (e_1_2_8_34_1) 1998; 7
Cristianini N (e_1_2_8_28_1) 2000
Li J (e_1_2_8_6_1) 2013; 805
e_1_2_8_3_1
Ali M (e_1_2_8_24_1) 2012; 217
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Rijnsburger M (e_1_2_8_26_1) 2017; 2017
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Shi Y (e_1_2_8_31_1) 1999
Clerc M (e_1_2_8_32_1) 2002
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 12
  start-page: 1889
  year: 2005
  ident: e_1_2_8_29_1
  article-title: Working set selection using second order information for training SVM
  publication-title: J Mach Learn Res
– start-page: 1945
  year: 1999
  ident: e_1_2_8_31_1
  article-title: Empirical study of particle swarm optimization
  publication-title: Proc IEEE Congr Evol Comput
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ins.2023.03.142
– ident: e_1_2_8_8_1
  doi: 10.1016/j.energy.2017.10.083
– ident: e_1_2_8_10_1
  doi: 10.1016/j.isatra.2017.12.004
– ident: e_1_2_8_27_1
  doi: 10.1016/j.rser.2022.112937
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1540-6261.1952.tb01525.x
– ident: e_1_2_8_11_1
  doi: 10.48084/etasr.2023
– ident: e_1_2_8_25_1
  doi: 10.1016/j.engappai.2023.106004
– ident: e_1_2_8_33_1
– volume: 805
  start-page: 1103
  year: 2013
  ident: e_1_2_8_6_1
  article-title: The empirical study of electricity market's financial risk assessment based on CVaR
  publication-title: Adv Mat Res
– ident: e_1_2_8_4_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.enpol.2019.111116
– ident: e_1_2_8_16_1
  doi: 10.1016/j.engappai.2009.09.002
– ident: e_1_2_8_15_1
  doi: 10.1016/j.resourpol.2020.101976
– ident: e_1_2_8_30_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_8_5_1
  doi: 10.12677/JOGT.2019.415076
– volume-title: An Introduction to Support Vector Machines
  year: 2000
  ident: e_1_2_8_28_1
– ident: e_1_2_8_19_1
  doi: 10.1016/j.swevo.2018.11.003
– volume: 217
  start-page: 404
  year: 2012
  ident: e_1_2_8_24_1
  article-title: An efficient differential evolution based algorithm for solving multi‐objective optimization problems
  publication-title: Eur J Oper Res
– ident: e_1_2_8_22_1
  doi: 10.1023/A:1008202821328
– ident: e_1_2_8_35_1
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_8_26_1
  article-title: Strategic portfolio management of upstream oil companies; based on a carbon‐constrained world and stranded oil reserves
  publication-title: Business
– ident: e_1_2_8_17_1
  doi: 10.1016/j.engappai.2009.09.011
– start-page: 1951
  year: 2002
  ident: e_1_2_8_32_1
  article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
  publication-title: Proc IEEE Congr Evol Comput
– volume: 7
  start-page: 601
  year: 1998
  ident: e_1_2_8_34_1
  article-title: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences
  publication-title: Evol Program
– ident: e_1_2_8_13_1
  doi: 10.1016/j.emj.2019.08.005
– ident: e_1_2_8_12_1
  doi: 10.1002/oca.2404
– ident: e_1_2_8_3_1
  doi: 10.1080/00207721.2011.555011
– ident: e_1_2_8_9_1
– ident: e_1_2_8_23_1
– ident: e_1_2_8_18_1
  doi: 10.1109/TEVC.2009.2016569
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ins.2021.04.055
SSID ssj0007132
Score 2.3278856
Snippet This paper focuses on optimizing project investments in oil and gas companies. It proposes a multi‐objective method for investing in oil and gas assets,...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1166
SubjectTerms Genetic algorithms
Integer programming
Mixed integer
Nonlinear equations
Optimization models
Support vector machines
Title Modeling and solving a multi‐objective optimal portfolio of upstream oil and gas assets
URI https://www.proquest.com/docview/3051774275
Volume 45
WOSCitedRecordID wos001133219400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007132
  issn: 0143-2087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3NbtQwEMetsuVADxWfamlBRuK2CsR2EjtHBFQcUItQK9pTNHYctFWbrLpb1COPwDP2STqO7TRbcSgHLtEqKzuKf96ZsXf8H0LepgDCyYAnspZugWLzBLROXdVU0eRaWglNX2xC7u-r4-PyW0hiX_TlBGTbqqurcv5fUeM9hO2Ozv4D7qFTvIGfETpeETte7wXeVTc7i0cP8VH9jgH4zMEhtaHTp97STTu0GefuOBbG4U13Nutc-Hg5d2dI4HzazbyUwE9YTDHMtl73KUazB6FtzHcf_xvezylfn3oI20_8busPOxtvNvDsNrVv2H8UONrBR1pvM53IJwYO2dioeo3IMHnEyEIyVhQjb-vOvf7VkntlWPTn70Tqy3CuimXfcWJDaqGXYeYVtqxcywdkncu8VBOy_un73tHXwU3j6pz7_Fb_RlGZOOXv41NXY5VVV93HH4ePyWZYONAPHvgTsmbbp2RjJCf5jJxE9BSR0YCeAu3RX__-M0CnATodoNOuoRE6Reh9DwideujPydHe58OPX5JQOiMxnBXLROkiB1zZAjNpzaRRjbAcuLIlB6GVEjo1pi40d_pttbFlwW3eqNqqrIHaSvGCTNqutVuEArOSKwWKGZtZDF8ySI1iIGrBmCn1NnkTB6mae4WU6i6EbbIbR68KP5UFfpEzXHwgnZf36GKHPLqdkLtksry4tK_IQ_NrOVtcvA5wbwAyP2ff
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+solving+a+multi%E2%80%90objective+optimal+portfolio+of+upstream+oil+and+gas+assets&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Yan%2C+Wei&rft.date=2024-05-01&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=45&rft.issue=3&rft.spage=1166&rft.epage=1181&rft_id=info:doi/10.1002%2Foca.3095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_oca_3095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon