Python shared atomic data types

Although atomicity plays a key role in data operations of shared variables in parallel computation, researchers haven't treated atomicity in Python in much detail. This study provides a novel approach to integrate the CPU‐based atomic C APIs into Python shared variables by C Foreign Function In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Software, practice & experience Ročník 53; číslo 12; s. 2393 - 2407
Hlavní autor: Ren, Xiquan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.12.2023
Témata:
ISSN:0038-0644, 1097-024X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Although atomicity plays a key role in data operations of shared variables in parallel computation, researchers haven't treated atomicity in Python in much detail. This study provides a novel approach to integrate the CPU‐based atomic C APIs into Python shared variables by C Foreign Function Interface for Python (CFFI) on all major platforms and utilises Cython to optimise calculation in CPython. Evidence shows that the resulting product, Shared Atomic Enterprise (SAE), could accelerate data operations on shared data types to a large extent. These findings provide a solid evidence base for the massive utilisation of Python atomic operations in parallel computation and concurrent programming.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0038-0644
1097-024X
DOI:10.1002/spe.3259