Advanced Hydrodynamic Modelling of Flow at a River Bridge: Insights from 3D Computational Fluid Dynamics

Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence of bridge structures produces complex flow fields, which are difficult to predict using standard hydraulic models. This entails difficulties...

Full description

Saved in:
Bibliographic Details
Published in:Procedia Structural Integrity Vol. 62; pp. 625 - 632
Main Authors: Lazzarin, Tommaso, Constantinescu, George, Viero, Daniele P.
Format: Journal Article
Language:English
Published: Elsevier B.V 2024
Subjects:
ISSN:2452-3216, 2452-3216
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence of bridge structures produces complex flow fields, which are difficult to predict using standard hydraulic models. This entails difficulties in estimating the hydrodynamic actions on the structure and the potential scour on the riverbed. A three-dimensional Computational Fluid Dynamics (3D CFD) model is used to analyze the flow field and the bed shear stresses at an existing bridge. The Volume of Fluid (VoF) method allows resolving the deformable free-surface, and the Detached Eddy Simulation (DES) approach allows resolving the dynamics of the energetically important turbulent eddies in the flow. The analysis deals with modeling the flow around a realistic, full-scale, multi-pier bridge in the Po River. Simulations considered different hydrodynamic regimes, i.e., the free-surface flow regime and the hypothetical pressure-flow regime which would occur when water levels are higher than the low chord of the bridge deck. The numerical application highlights the potential of the DES technique for analyzing the hydrodynamics of flow at bridges in natural river channels. Besides the turbulent flow fields and the description of the vortical structures, relevant results include the time-varying spatial distribution of the hydrodynamic forces acting on the different parts of the bridge and the time-varying distribution of the shear stress on the bed. This aspect is of particular interest because i) the estimation of drag forces on the structure components may be oversimplified using canonical, averaged formulas, and ii) the fluctuations in time of the bed shear stresses play a key role in determining the removal of sediments from the bed and the scour hole close to the bridge piers.
AbstractList Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence of bridge structures produces complex flow fields, which are difficult to predict using standard hydraulic models. This entails difficulties in estimating the hydrodynamic actions on the structure and the potential scour on the riverbed. A three-dimensional Computational Fluid Dynamics (3D CFD) model is used to analyze the flow field and the bed shear stresses at an existing bridge. The Volume of Fluid (VoF) method allows resolving the deformable free-surface, and the Detached Eddy Simulation (DES) approach allows resolving the dynamics of the energetically important turbulent eddies in the flow. The analysis deals with modeling the flow around a realistic, full-scale, multi-pier bridge in the Po River. Simulations considered different hydrodynamic regimes, i.e., the free-surface flow regime and the hypothetical pressure-flow regime which would occur when water levels are higher than the low chord of the bridge deck. The numerical application highlights the potential of the DES technique for analyzing the hydrodynamics of flow at bridges in natural river channels. Besides the turbulent flow fields and the description of the vortical structures, relevant results include the time-varying spatial distribution of the hydrodynamic forces acting on the different parts of the bridge and the time-varying distribution of the shear stress on the bed. This aspect is of particular interest because i) the estimation of drag forces on the structure components may be oversimplified using canonical, averaged formulas, and ii) the fluctuations in time of the bed shear stresses play a key role in determining the removal of sediments from the bed and the scour hole close to the bridge piers.
Author Lazzarin, Tommaso
Viero, Daniele P.
Constantinescu, George
Author_xml – sequence: 1
  givenname: Tommaso
  surname: Lazzarin
  fullname: Lazzarin, Tommaso
  email: tommaso.lazzarin@dicea.unipd.it
  organization: Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
– sequence: 2
  givenname: George
  surname: Constantinescu
  fullname: Constantinescu, George
  organization: Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA
– sequence: 3
  givenname: Daniele P.
  surname: Viero
  fullname: Viero, Daniele P.
  organization: Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
BookMark eNp9kM1OAjEURhuDiYi8gYu-wIy3nd-6MEEQIcGYGPZNae9AyTAl7YDh7R0yLly5undzTr6cezJoXIOEPDKIGbD8aR8fvQutjznwNAYRQ1nckCFPMx4lnOWDP_8dGYewB4AEGABnQ7KbmLNqNBq6uBjvzKVRB6vphzNY17bZUlfRee2-qWqpol_2jJ6-emu2-EyXTbDbXRto5d2BJjM6dYfjqVWtdY2qO-xkDZ31xvBAbitVBxz_3hFZz9_W00W0-nxfTierSHf7ikhsEEshlEjAmAKAZabaYKE55GlpEgFJyooU8yIrGdcsxywTZZGDhqoqhE5GJO21uosSPFby6O1B-YtkIK-95F72veS1lwQhu14d9tJj2E07W_QyaIvXLtajbqVx9n_BD_r9dzQ
Cites_doi 10.1061/(ASCE)0733-9429(2009)135:2(106)
10.1029/2010WR010114
10.1016/0021-9991(81)90145-5
10.1029/2022WR034151
10.5194/nhess-22-1559-2022
10.1061/(ASCE)HY.1943-7900.0000876
10.1016/j.advwatres.2017.05.019
10.1061/(ASCE)HY.1943-7900.0001591
10.1063/1.4923063
10.1016/j.advwatres.2022.104355
10.1061/(ASCE)HY.1943-7900.0000693
10.3390/geosciences13040112
10.1061/(ASCE)0733-9429(2000)126:1(43)
10.1016/j.advwatres.2013.05.011
10.1016/j.trgeo.2021.100549
10.1080/00221686.2020.1818310
10.1061/(ASCE)HY.1943-7900.0001330
10.1061/(ASCE)0733-9429(2003)129:11(854)
10.1063/1.2716813
10.1029/2011WR010586
10.1016/j.advwatres.2010.09.018
10.1016/j.advwatres.2018.10.014
10.1063/1.4984926
10.1007/s11069-017-2842-2
10.1080/00221686.2014.967821
10.1007/s00477-012-0666-x
10.1061/(ASCE)0733-9429(2008)134:5(572)
10.1016/j.advwatres.2020.103525
10.1080/19942060.2012.11015436
10.1061/(ASCE)HY.1943-7900.0000742
10.1063/5.0131953
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.prostr.2024.09.087
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2452-3216
EndPage 632
ExternalDocumentID 10_1016_j_prostr_2024_09_087
S2452321624006723
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c2167-9bee899a930dd70015dfbe7c20648d39034174e675812c16e5598760c0ff79c3
ISSN 2452-3216
IngestDate Thu Nov 13 04:19:13 EST 2025
Sat Aug 09 17:32:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Bed Shear Stress
Numerical Simulations
Hydraulic Modelling
Computational Fluid Dynamics
Bridge
Pier Scour
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2167-9bee899a930dd70015dfbe7c20648d39034174e675812c16e5598760c0ff79c3
OpenAccessLink https://dx.doi.org/10.1016/j.prostr.2024.09.087
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_prostr_2024_09_087
elsevier_sciencedirect_doi_10_1016_j_prostr_2024_09_087
PublicationCentury 2000
PublicationDate 2024
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Procedia Structural Integrity
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Constantinescu, G., Koken, M., Zeng, J., 2011. The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation. Water Resources Research 47.
Chang, Constantinescu, Lien, Tsai, Lai, Loh (bib1) 2013; 139
Horna-Munoz, Constantinescu (bib11) 2018; 122
Erduran, Seckin, Kocaman, Atabay (bib8) 2012; 6
Hirt, Nichols (bib10) 1981; 39
Cheng, Koken, Constantinescu (bib3) 2018; 120
Izadinia, Heidarpour, Schleiss (bib12) 2013; 27
Kang, Lightbody, Hill, Sotiropoulos (bib13) 2011; 34
Malavasi, Guadagnini (bib23) 2003; 129
Wang, Yu, Liang (bib31) 2017; 87
Chua, Fraga, Stoesser, Hong, Sturm (bib5) 2019; 145
Viero, D’Alpaos, Carniello, Defina (bib30) 2013; 59
Kara, Stoesser, Sturm, Mulahasan (bib14) 2015; 53
Koken, Constantinescu (bib17) 2014; 140
Shahriar, Ortiz, Montoya, Gabr (bib28) 2021; 28
Chang, W.-Y., Constantinescu, G., Tsai, W.F., Lien, H.C., 2011. Coherent structure dynamics and sediment erosion mechanisms around an in-stream rectangular cylinder at low and moderate angles of attack. Water Resources Research 47.
Paik, J., Escauriaza, C., Sotiropoulos, F., 2007. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids 19.
Teruzzi, Ballio, Armenio (bib29) 2009; 135
Lazzarin, T., Defina, A., Viero, D.P., 2023b. Assessing 40 Years of Flood Risk Evolution at the Micro-Scale Using an Innovative Modeling Approach: The Effects of Urbanization and Land Planning. Geosciences 13.
Wu, Zeng, Constantinescu (bib32) 2021; 59
Menter, F., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. Heat and Mass Transfer 625–632.
Pregnolato, Winter, Mascarenas, Sen, Bates, Motley (bib27) 2022; 22
Ettema, Constantinescu, Melville (bib9) 2017; 143
Lazzarin, Viero (bib21) 2023; 171
Morales, Ettema (bib25) 2013; 139
Kirkil, Constantinescu, Ettema (bib16) 2008; 134
Lazzarin, Constantinescu, Di Micco, Wu, Lavignani, Lo Brutto, Termini, Viero (bib18) 2023; 59
Dazzi, Vacondio, Mignosa (bib7) 2020; 137
Lazzarin, Viero, Defina, Cozzolino (bib22) 2023; 35
Chiew, Lim (bib4) 2000; 126
Kirkil, Constantinescu (bib15) 2015; 27
Lazzarin, Constantinescu, Viero (bib19) 2024
Zeng, Constantinescu (bib33) 2017; 29
Lazzarin (10.1016/j.prostr.2024.09.087_bib19) 2024
Chua (10.1016/j.prostr.2024.09.087_bib5) 2019; 145
Kang (10.1016/j.prostr.2024.09.087_bib13) 2011; 34
Kirkil (10.1016/j.prostr.2024.09.087_bib16) 2008; 134
Horna-Munoz (10.1016/j.prostr.2024.09.087_bib11) 2018; 122
Cheng (10.1016/j.prostr.2024.09.087_bib3) 2018; 120
Wang (10.1016/j.prostr.2024.09.087_bib31) 2017; 87
Kara (10.1016/j.prostr.2024.09.087_bib14) 2015; 53
10.1016/j.prostr.2024.09.087_bib20
Hirt (10.1016/j.prostr.2024.09.087_bib10) 1981; 39
Erduran (10.1016/j.prostr.2024.09.087_bib8) 2012; 6
Teruzzi (10.1016/j.prostr.2024.09.087_bib29) 2009; 135
10.1016/j.prostr.2024.09.087_bib24
Dazzi (10.1016/j.prostr.2024.09.087_bib7) 2020; 137
10.1016/j.prostr.2024.09.087_bib26
Izadinia (10.1016/j.prostr.2024.09.087_bib12) 2013; 27
Malavasi (10.1016/j.prostr.2024.09.087_bib23) 2003; 129
10.1016/j.prostr.2024.09.087_bib6
Morales (10.1016/j.prostr.2024.09.087_bib25) 2013; 139
Lazzarin (10.1016/j.prostr.2024.09.087_bib22) 2023; 35
Chang (10.1016/j.prostr.2024.09.087_bib1) 2013; 139
10.1016/j.prostr.2024.09.087_bib2
Lazzarin (10.1016/j.prostr.2024.09.087_bib18) 2023; 59
Koken (10.1016/j.prostr.2024.09.087_bib17) 2014; 140
Ettema (10.1016/j.prostr.2024.09.087_bib9) 2017; 143
Pregnolato (10.1016/j.prostr.2024.09.087_bib27) 2022; 22
Viero (10.1016/j.prostr.2024.09.087_bib30) 2013; 59
Kirkil (10.1016/j.prostr.2024.09.087_bib15) 2015; 27
Lazzarin (10.1016/j.prostr.2024.09.087_bib21) 2023; 171
Shahriar (10.1016/j.prostr.2024.09.087_bib28) 2021; 28
Zeng (10.1016/j.prostr.2024.09.087_bib33) 2017; 29
Chiew (10.1016/j.prostr.2024.09.087_bib4) 2000; 126
Wu (10.1016/j.prostr.2024.09.087_bib32) 2021; 59
References_xml – volume: 122
  start-page: 148
  year: 2018
  end-page: 165
  ident: bib11
  article-title: A fully 3-D numerical model to predict flood wave propagation and assess efficiency of flood protection measures
  publication-title: Advances in Water Resources
– volume: 22
  start-page: 1559
  year: 2022
  end-page: 1576
  ident: bib27
  article-title: Assessing flooding impact to riverine bridges: an integrated analysis
  publication-title: Natural Hazards and Earth System Sciences
– volume: 27
  start-page: 075102
  year: 2015
  ident: bib15
  article-title: Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder
  publication-title: Physics of Fluids
– year: 2024
  ident: bib19
  publication-title: A numerical investigation of flow field and bed stresses at a river bridge: the effects of piers and of pressure-flow with deck overtopping. Advances in Water Resources
– volume: 28
  start-page: 100549
  year: 2021
  ident: bib28
  article-title: Bridge Pier Scour: An overview of factors affecting the phenomenon and comparative evaluation of selected models
  publication-title: Transportation Geotechnics
– volume: 59
  start-page: 82
  year: 2013
  end-page: 94
  ident: bib30
  article-title: Mathematical modeling of flooding due to river bank failure
  publication-title: Advances in Water Resources
– volume: 139
  start-page: 812
  year: 2013
  end-page: 826
  ident: bib1
  article-title: Flow Structure around Bridge Piers of Varying Geometrical Complexity
  publication-title: Journal of Hydraulic Engineering
– reference: Constantinescu, G., Koken, M., Zeng, J., 2011. The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation. Water Resources Research 47.
– volume: 171
  start-page: 104355
  year: 2023
  ident: bib21
  article-title: Curvature-induced secondary flow in 2D depth-averaged hydro-morphodynamic models: An assessment of different approaches and key factors
  publication-title: Advances in Water Resources
– volume: 59
  start-page: 651
  year: 2021
  end-page: 661
  ident: bib32
  article-title: A multi-parameter design formula for riprap size selection at wing-wall abutments
  publication-title: Journal of Hydraulic Research
– volume: 59
  year: 2023
  ident: bib18
  article-title: Influence of bed roughness on flow and turbulence structure around a 2 partially-buried, isolated freshwater mussel
  publication-title: Water Resources Research
– volume: 87
  start-page: 1881
  year: 2017
  end-page: 1906
  ident: bib31
  article-title: A review of bridge scour: mechanism, estimation, monitoring and countermeasures
  publication-title: Natural Hazards
– volume: 137
  start-page: 103525
  year: 2020
  ident: bib7
  article-title: Internal boundary conditions for a GPU-accelerated 2D shallow water model: Implementation and applications
  publication-title: Advances in Water Resources
– reference: Lazzarin, T., Defina, A., Viero, D.P., 2023b. Assessing 40 Years of Flood Risk Evolution at the Micro-Scale Using an Innovative Modeling Approach: The Effects of Urbanization and Land Planning. Geosciences 13.
– volume: 53
  start-page: 186
  year: 2015
  end-page: 195
  ident: bib14
  article-title: Flow dynamics through a submerged bridge opening with overtopping
  publication-title: Journal of Hydraulic Research
– volume: 143
  start-page: 03117006
  year: 2017
  ident: bib9
  article-title: Flow-Field Complexity and Design Estimation of Pier-Scour Depth: Sixty Years since Laursen and Toch
  publication-title: Journal of Hydraulic Engineering
– reference: Menter, F., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. Heat and Mass Transfer 625–632.
– volume: 126
  start-page: 43
  year: 2000
  end-page: 55
  ident: bib4
  article-title: Failure Behavior of Riprap Layer at Bridge Piers under Live-Bed Conditions
  publication-title: Journal of Hydraulic Engineering
– volume: 6
  start-page: 475
  year: 2012
  end-page: 489
  ident: bib8
  article-title: 3D Numerical Modelling of Flow Around Skewed Bridge Crossing
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 129
  start-page: 854
  year: 2003
  end-page: 861
  ident: bib23
  article-title: Hydrodynamic Loading on River Bridges
  publication-title: Journal of Hydraulic Engineering
– volume: 139
  start-page: 470
  year: 2013
  end-page: 481
  ident: bib25
  article-title: Insights from Depth-Averaged Numerical Simulation of Flow at Bridge Abutments in Compound Channels
  publication-title: Journal of Hydraulic Engineering
– volume: 34
  start-page: 98
  year: 2011
  end-page: 113
  ident: bib13
  article-title: High-resolution numerical simulation of turbulence in natural waterways
  publication-title: Advances in Water Resources
– volume: 134
  start-page: 572
  year: 2008
  end-page: 587
  ident: bib16
  article-title: Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole
  publication-title: Journal of Hydraulic Engineering
– volume: 135
  start-page: 106
  year: 2009
  end-page: 117
  ident: bib29
  article-title: Turbulent Stresses at the Bottom Surface near an Abutment: Laboratory-Scale Numerical Experiment
  publication-title: Journal of Hydraulic Engineering
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib10
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: Journal of Computational Physics
– reference: Chang, W.-Y., Constantinescu, G., Tsai, W.F., Lien, H.C., 2011. Coherent structure dynamics and sediment erosion mechanisms around an in-stream rectangular cylinder at low and moderate angles of attack. Water Resources Research 47.
– reference: Paik, J., Escauriaza, C., Sotiropoulos, F., 2007. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids 19.
– volume: 140
  start-page: 04014031
  year: 2014
  ident: bib17
  article-title: Flow and Turbulence Structure around Abutments with Sloped Sidewalls
  publication-title: Journal of Hydraulic Engineering
– volume: 120
  start-page: 65
  year: 2018
  end-page: 82
  ident: bib3
  article-title: Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour
  publication-title: Advances in Water Resources
– volume: 145
  start-page: 04019024
  year: 2019
  ident: bib5
  article-title: Effect of Bridge Abutment Length on Turbulence Structure and Flow through the Opening
  publication-title: Journal of Hydraulic Engineering
– volume: 29
  start-page: 066601
  year: 2017
  ident: bib33
  article-title: Flow and coherent structures around circular cylinders in shallow water
  publication-title: Physics of Fluids
– volume: 27
  start-page: 1303
  year: 2013
  end-page: 1314
  ident: bib12
  article-title: Investigation of turbulence flow and sediment entrainment around a bridge pier
  publication-title: Stochastic Environmental Research and Risk Assessment
– volume: 35
  start-page: 024114
  year: 2023
  ident: bib22
  article-title: Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions
  publication-title: Physics of Fluids
– ident: 10.1016/j.prostr.2024.09.087_bib24
– volume: 135
  start-page: 106
  year: 2009
  ident: 10.1016/j.prostr.2024.09.087_bib29
  article-title: Turbulent Stresses at the Bottom Surface near an Abutment: Laboratory-Scale Numerical Experiment
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(2009)135:2(106)
– year: 2024
  ident: 10.1016/j.prostr.2024.09.087_bib19
– ident: 10.1016/j.prostr.2024.09.087_bib6
  doi: 10.1029/2010WR010114
– volume: 39
  start-page: 201
  year: 1981
  ident: 10.1016/j.prostr.2024.09.087_bib10
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(81)90145-5
– volume: 59
  year: 2023
  ident: 10.1016/j.prostr.2024.09.087_bib18
  article-title: Influence of bed roughness on flow and turbulence structure around a 2 partially-buried, isolated freshwater mussel
  publication-title: Water Resources Research
  doi: 10.1029/2022WR034151
– volume: 22
  start-page: 1559
  year: 2022
  ident: 10.1016/j.prostr.2024.09.087_bib27
  article-title: Assessing flooding impact to riverine bridges: an integrated analysis
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-22-1559-2022
– volume: 140
  start-page: 04014031
  year: 2014
  ident: 10.1016/j.prostr.2024.09.087_bib17
  article-title: Flow and Turbulence Structure around Abutments with Sloped Sidewalls
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)HY.1943-7900.0000876
– volume: 120
  start-page: 65
  year: 2018
  ident: 10.1016/j.prostr.2024.09.087_bib3
  article-title: Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2017.05.019
– volume: 145
  start-page: 04019024
  year: 2019
  ident: 10.1016/j.prostr.2024.09.087_bib5
  article-title: Effect of Bridge Abutment Length on Turbulence Structure and Flow through the Opening
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)HY.1943-7900.0001591
– volume: 27
  start-page: 075102
  year: 2015
  ident: 10.1016/j.prostr.2024.09.087_bib15
  article-title: Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder
  publication-title: Physics of Fluids
  doi: 10.1063/1.4923063
– volume: 171
  start-page: 104355
  year: 2023
  ident: 10.1016/j.prostr.2024.09.087_bib21
  article-title: Curvature-induced secondary flow in 2D depth-averaged hydro-morphodynamic models: An assessment of different approaches and key factors
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2022.104355
– volume: 139
  start-page: 470
  year: 2013
  ident: 10.1016/j.prostr.2024.09.087_bib25
  article-title: Insights from Depth-Averaged Numerical Simulation of Flow at Bridge Abutments in Compound Channels
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)HY.1943-7900.0000693
– ident: 10.1016/j.prostr.2024.09.087_bib20
  doi: 10.3390/geosciences13040112
– volume: 126
  start-page: 43
  year: 2000
  ident: 10.1016/j.prostr.2024.09.087_bib4
  article-title: Failure Behavior of Riprap Layer at Bridge Piers under Live-Bed Conditions
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(2000)126:1(43)
– volume: 59
  start-page: 82
  year: 2013
  ident: 10.1016/j.prostr.2024.09.087_bib30
  article-title: Mathematical modeling of flooding due to river bank failure
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2013.05.011
– volume: 28
  start-page: 100549
  year: 2021
  ident: 10.1016/j.prostr.2024.09.087_bib28
  article-title: Bridge Pier Scour: An overview of factors affecting the phenomenon and comparative evaluation of selected models
  publication-title: Transportation Geotechnics
  doi: 10.1016/j.trgeo.2021.100549
– volume: 59
  start-page: 651
  year: 2021
  ident: 10.1016/j.prostr.2024.09.087_bib32
  article-title: A multi-parameter design formula for riprap size selection at wing-wall abutments
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221686.2020.1818310
– volume: 143
  start-page: 03117006
  year: 2017
  ident: 10.1016/j.prostr.2024.09.087_bib9
  article-title: Flow-Field Complexity and Design Estimation of Pier-Scour Depth: Sixty Years since Laursen and Toch
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)HY.1943-7900.0001330
– volume: 129
  start-page: 854
  year: 2003
  ident: 10.1016/j.prostr.2024.09.087_bib23
  article-title: Hydrodynamic Loading on River Bridges
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(2003)129:11(854)
– ident: 10.1016/j.prostr.2024.09.087_bib26
  doi: 10.1063/1.2716813
– ident: 10.1016/j.prostr.2024.09.087_bib2
  doi: 10.1029/2011WR010586
– volume: 34
  start-page: 98
  year: 2011
  ident: 10.1016/j.prostr.2024.09.087_bib13
  article-title: High-resolution numerical simulation of turbulence in natural waterways
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2010.09.018
– volume: 122
  start-page: 148
  year: 2018
  ident: 10.1016/j.prostr.2024.09.087_bib11
  article-title: A fully 3-D numerical model to predict flood wave propagation and assess efficiency of flood protection measures
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2018.10.014
– volume: 29
  start-page: 066601
  year: 2017
  ident: 10.1016/j.prostr.2024.09.087_bib33
  article-title: Flow and coherent structures around circular cylinders in shallow water
  publication-title: Physics of Fluids
  doi: 10.1063/1.4984926
– volume: 87
  start-page: 1881
  year: 2017
  ident: 10.1016/j.prostr.2024.09.087_bib31
  article-title: A review of bridge scour: mechanism, estimation, monitoring and countermeasures
  publication-title: Natural Hazards
  doi: 10.1007/s11069-017-2842-2
– volume: 53
  start-page: 186
  year: 2015
  ident: 10.1016/j.prostr.2024.09.087_bib14
  article-title: Flow dynamics through a submerged bridge opening with overtopping
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221686.2014.967821
– volume: 27
  start-page: 1303
  year: 2013
  ident: 10.1016/j.prostr.2024.09.087_bib12
  article-title: Investigation of turbulence flow and sediment entrainment around a bridge pier
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-012-0666-x
– volume: 134
  start-page: 572
  year: 2008
  ident: 10.1016/j.prostr.2024.09.087_bib16
  article-title: Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(2008)134:5(572)
– volume: 137
  start-page: 103525
  year: 2020
  ident: 10.1016/j.prostr.2024.09.087_bib7
  article-title: Internal boundary conditions for a GPU-accelerated 2D shallow water model: Implementation and applications
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2020.103525
– volume: 6
  start-page: 475
  year: 2012
  ident: 10.1016/j.prostr.2024.09.087_bib8
  article-title: 3D Numerical Modelling of Flow Around Skewed Bridge Crossing
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2012.11015436
– volume: 139
  start-page: 812
  year: 2013
  ident: 10.1016/j.prostr.2024.09.087_bib1
  article-title: Flow Structure around Bridge Piers of Varying Geometrical Complexity
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)HY.1943-7900.0000742
– volume: 35
  start-page: 024114
  year: 2023
  ident: 10.1016/j.prostr.2024.09.087_bib22
  article-title: Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions
  publication-title: Physics of Fluids
  doi: 10.1063/5.0131953
SSID ssj0003010021
Score 2.2495947
Snippet Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 625
SubjectTerms Bed Shear Stress
Bridge
Computational Fluid Dynamics
Hydraulic Modelling
Numerical Simulations
Pier Scour
Title Advanced Hydrodynamic Modelling of Flow at a River Bridge: Insights from 3D Computational Fluid Dynamics
URI https://dx.doi.org/10.1016/j.prostr.2024.09.087
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2452-3216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003010021
  issn: 2452-3216
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoFLBQJEeWkP3CIj25t6Y24RISpSVVUoQr1Z632IVKldYae0PfBf-KfM7Hhdl1YVPXCxko2ySTxfZr6ZnQdj761yrlTCRWCrVDRxRkb5RJgoUQLsrdNaJ75QeF8eHEyPjvLD0eh3qIU5W8uqmp6f56f_VdSwBsLG0tl7iLvfFBbgMQgdriB2uP6T4GfhVH_vwoB2pInzfuYZtd8GdrhY1z-xilGNv2JaBkYIcMS6mGHuAHrrDZWdiPmYpj6EiOFivVmZ8Zz2bIbE1hccANbwmHujqZnHF9-KYtX2Uft9dXkJvjkNRK5PTlRT92cgxFNbzMLXm6tofXj9G5jvelATPz78MAxYUIU0aTQ85Y1EmnS9r29Z61Ryp6BJp2ZUGd2Z54zCoTc0PwUhjtHuNC02ek2pgW1nzq812v7LAPZpiSHj7bigXQrcpYjzAnZ5wB6mErwvzA79dRXGA_2INAlHGIYfEgo0fRbhza9zOwEakJrlE7bdeSN8Rih6yka2esa-BwTxIYJ4jyBeO44I4qrlinsEcULQRx7wwxE_XMz5Nfxwjx8e8POcLRefl5_2om4gR6RT7I-fl9aCf65yERuDCQu7xpVW6hR47dSIPAZKJCcWfdAk1Ulmsfu_zGIdOydzLV6wraqu7EvGJ1buJqJUqTRA2FNb6kwlWk2tio0QmdlhUbhJIAvfdqW4Szo7TIY7WXTUkShhAfi4852v7vlJr9ljfEZRuDdsC_5U9i17pM_aVfPjnQfHH_F3lQo
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Hydrodynamic+Modelling+of+Flow+at+a+River+Bridge%3A+Insights+from+3D+Computational+Fluid+Dynamics&rft.jtitle=Procedia+Structural+Integrity&rft.au=Lazzarin%2C+Tommaso&rft.au=Constantinescu%2C+George&rft.au=Viero%2C+Daniele+P.&rft.date=2024&rft.issn=2452-3216&rft.eissn=2452-3216&rft.volume=62&rft.spage=625&rft.epage=632&rft_id=info:doi/10.1016%2Fj.prostr.2024.09.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prostr_2024_09_087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-3216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-3216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-3216&client=summon