Advanced Hydrodynamic Modelling of Flow at a River Bridge: Insights from 3D Computational Fluid Dynamics
Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence of bridge structures produces complex flow fields, which are difficult to predict using standard hydraulic models. This entails difficulties...
Saved in:
| Published in: | Procedia Structural Integrity Vol. 62; pp. 625 - 632 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
2024
|
| Subjects: | |
| ISSN: | 2452-3216, 2452-3216 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence of bridge structures produces complex flow fields, which are difficult to predict using standard hydraulic models. This entails difficulties in estimating the hydrodynamic actions on the structure and the potential scour on the riverbed. A three-dimensional Computational Fluid Dynamics (3D CFD) model is used to analyze the flow field and the bed shear stresses at an existing bridge. The Volume of Fluid (VoF) method allows resolving the deformable free-surface, and the Detached Eddy Simulation (DES) approach allows resolving the dynamics of the energetically important turbulent eddies in the flow. The analysis deals with modeling the flow around a realistic, full-scale, multi-pier bridge in the Po River. Simulations considered different hydrodynamic regimes, i.e., the free-surface flow regime and the hypothetical pressure-flow regime which would occur when water levels are higher than the low chord of the bridge deck. The numerical application highlights the potential of the DES technique for analyzing the hydrodynamics of flow at bridges in natural river channels. Besides the turbulent flow fields and the description of the vortical structures, relevant results include the time-varying spatial distribution of the hydrodynamic forces acting on the different parts of the bridge and the time-varying distribution of the shear stress on the bed. This aspect is of particular interest because i) the estimation of drag forces on the structure components may be oversimplified using canonical, averaged formulas, and ii) the fluctuations in time of the bed shear stresses play a key role in determining the removal of sediments from the bed and the scour hole close to the bridge piers. |
|---|---|
| AbstractList | Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence of bridge structures produces complex flow fields, which are difficult to predict using standard hydraulic models. This entails difficulties in estimating the hydrodynamic actions on the structure and the potential scour on the riverbed. A three-dimensional Computational Fluid Dynamics (3D CFD) model is used to analyze the flow field and the bed shear stresses at an existing bridge. The Volume of Fluid (VoF) method allows resolving the deformable free-surface, and the Detached Eddy Simulation (DES) approach allows resolving the dynamics of the energetically important turbulent eddies in the flow. The analysis deals with modeling the flow around a realistic, full-scale, multi-pier bridge in the Po River. Simulations considered different hydrodynamic regimes, i.e., the free-surface flow regime and the hypothetical pressure-flow regime which would occur when water levels are higher than the low chord of the bridge deck. The numerical application highlights the potential of the DES technique for analyzing the hydrodynamics of flow at bridges in natural river channels. Besides the turbulent flow fields and the description of the vortical structures, relevant results include the time-varying spatial distribution of the hydrodynamic forces acting on the different parts of the bridge and the time-varying distribution of the shear stress on the bed. This aspect is of particular interest because i) the estimation of drag forces on the structure components may be oversimplified using canonical, averaged formulas, and ii) the fluctuations in time of the bed shear stresses play a key role in determining the removal of sediments from the bed and the scour hole close to the bridge piers. |
| Author | Lazzarin, Tommaso Viero, Daniele P. Constantinescu, George |
| Author_xml | – sequence: 1 givenname: Tommaso surname: Lazzarin fullname: Lazzarin, Tommaso email: tommaso.lazzarin@dicea.unipd.it organization: Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy – sequence: 2 givenname: George surname: Constantinescu fullname: Constantinescu, George organization: Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA – sequence: 3 givenname: Daniele P. surname: Viero fullname: Viero, Daniele P. organization: Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy |
| BookMark | eNp9kM1OAjEURhuDiYi8gYu-wIy3nd-6MEEQIcGYGPZNae9AyTAl7YDh7R0yLly5undzTr6cezJoXIOEPDKIGbD8aR8fvQutjznwNAYRQ1nckCFPMx4lnOWDP_8dGYewB4AEGABnQ7KbmLNqNBq6uBjvzKVRB6vphzNY17bZUlfRee2-qWqpol_2jJ6-emu2-EyXTbDbXRto5d2BJjM6dYfjqVWtdY2qO-xkDZ31xvBAbitVBxz_3hFZz9_W00W0-nxfTierSHf7ikhsEEshlEjAmAKAZabaYKE55GlpEgFJyooU8yIrGdcsxywTZZGDhqoqhE5GJO21uosSPFby6O1B-YtkIK-95F72veS1lwQhu14d9tJj2E07W_QyaIvXLtajbqVx9n_BD_r9dzQ |
| Cites_doi | 10.1061/(ASCE)0733-9429(2009)135:2(106) 10.1029/2010WR010114 10.1016/0021-9991(81)90145-5 10.1029/2022WR034151 10.5194/nhess-22-1559-2022 10.1061/(ASCE)HY.1943-7900.0000876 10.1016/j.advwatres.2017.05.019 10.1061/(ASCE)HY.1943-7900.0001591 10.1063/1.4923063 10.1016/j.advwatres.2022.104355 10.1061/(ASCE)HY.1943-7900.0000693 10.3390/geosciences13040112 10.1061/(ASCE)0733-9429(2000)126:1(43) 10.1016/j.advwatres.2013.05.011 10.1016/j.trgeo.2021.100549 10.1080/00221686.2020.1818310 10.1061/(ASCE)HY.1943-7900.0001330 10.1061/(ASCE)0733-9429(2003)129:11(854) 10.1063/1.2716813 10.1029/2011WR010586 10.1016/j.advwatres.2010.09.018 10.1016/j.advwatres.2018.10.014 10.1063/1.4984926 10.1007/s11069-017-2842-2 10.1080/00221686.2014.967821 10.1007/s00477-012-0666-x 10.1061/(ASCE)0733-9429(2008)134:5(572) 10.1016/j.advwatres.2020.103525 10.1080/19942060.2012.11015436 10.1061/(ASCE)HY.1943-7900.0000742 10.1063/5.0131953 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.prostr.2024.09.087 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2452-3216 |
| EndPage | 632 |
| ExternalDocumentID | 10_1016_j_prostr_2024_09_087 S2452321624006723 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB KQ8 M41 M~E O9- OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c2167-9bee899a930dd70015dfbe7c20648d39034174e675812c16e5598760c0ff79c3 |
| ISSN | 2452-3216 |
| IngestDate | Thu Nov 13 04:19:13 EST 2025 Sat Aug 09 17:32:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Bed Shear Stress Numerical Simulations Hydraulic Modelling Computational Fluid Dynamics Bridge Pier Scour |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2167-9bee899a930dd70015dfbe7c20648d39034174e675812c16e5598760c0ff79c3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.prostr.2024.09.087 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1016_j_prostr_2024_09_087 elsevier_sciencedirect_doi_10_1016_j_prostr_2024_09_087 |
| PublicationCentury | 2000 |
| PublicationDate | 2024 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia Structural Integrity |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Constantinescu, G., Koken, M., Zeng, J., 2011. The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation. Water Resources Research 47. Chang, Constantinescu, Lien, Tsai, Lai, Loh (bib1) 2013; 139 Horna-Munoz, Constantinescu (bib11) 2018; 122 Erduran, Seckin, Kocaman, Atabay (bib8) 2012; 6 Hirt, Nichols (bib10) 1981; 39 Cheng, Koken, Constantinescu (bib3) 2018; 120 Izadinia, Heidarpour, Schleiss (bib12) 2013; 27 Kang, Lightbody, Hill, Sotiropoulos (bib13) 2011; 34 Malavasi, Guadagnini (bib23) 2003; 129 Wang, Yu, Liang (bib31) 2017; 87 Chua, Fraga, Stoesser, Hong, Sturm (bib5) 2019; 145 Viero, D’Alpaos, Carniello, Defina (bib30) 2013; 59 Kara, Stoesser, Sturm, Mulahasan (bib14) 2015; 53 Koken, Constantinescu (bib17) 2014; 140 Shahriar, Ortiz, Montoya, Gabr (bib28) 2021; 28 Chang, W.-Y., Constantinescu, G., Tsai, W.F., Lien, H.C., 2011. Coherent structure dynamics and sediment erosion mechanisms around an in-stream rectangular cylinder at low and moderate angles of attack. Water Resources Research 47. Paik, J., Escauriaza, C., Sotiropoulos, F., 2007. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids 19. Teruzzi, Ballio, Armenio (bib29) 2009; 135 Lazzarin, T., Defina, A., Viero, D.P., 2023b. Assessing 40 Years of Flood Risk Evolution at the Micro-Scale Using an Innovative Modeling Approach: The Effects of Urbanization and Land Planning. Geosciences 13. Wu, Zeng, Constantinescu (bib32) 2021; 59 Menter, F., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. Heat and Mass Transfer 625–632. Pregnolato, Winter, Mascarenas, Sen, Bates, Motley (bib27) 2022; 22 Ettema, Constantinescu, Melville (bib9) 2017; 143 Lazzarin, Viero (bib21) 2023; 171 Morales, Ettema (bib25) 2013; 139 Kirkil, Constantinescu, Ettema (bib16) 2008; 134 Lazzarin, Constantinescu, Di Micco, Wu, Lavignani, Lo Brutto, Termini, Viero (bib18) 2023; 59 Dazzi, Vacondio, Mignosa (bib7) 2020; 137 Lazzarin, Viero, Defina, Cozzolino (bib22) 2023; 35 Chiew, Lim (bib4) 2000; 126 Kirkil, Constantinescu (bib15) 2015; 27 Lazzarin, Constantinescu, Viero (bib19) 2024 Zeng, Constantinescu (bib33) 2017; 29 Lazzarin (10.1016/j.prostr.2024.09.087_bib19) 2024 Chua (10.1016/j.prostr.2024.09.087_bib5) 2019; 145 Kang (10.1016/j.prostr.2024.09.087_bib13) 2011; 34 Kirkil (10.1016/j.prostr.2024.09.087_bib16) 2008; 134 Horna-Munoz (10.1016/j.prostr.2024.09.087_bib11) 2018; 122 Cheng (10.1016/j.prostr.2024.09.087_bib3) 2018; 120 Wang (10.1016/j.prostr.2024.09.087_bib31) 2017; 87 Kara (10.1016/j.prostr.2024.09.087_bib14) 2015; 53 10.1016/j.prostr.2024.09.087_bib20 Hirt (10.1016/j.prostr.2024.09.087_bib10) 1981; 39 Erduran (10.1016/j.prostr.2024.09.087_bib8) 2012; 6 Teruzzi (10.1016/j.prostr.2024.09.087_bib29) 2009; 135 10.1016/j.prostr.2024.09.087_bib24 Dazzi (10.1016/j.prostr.2024.09.087_bib7) 2020; 137 10.1016/j.prostr.2024.09.087_bib26 Izadinia (10.1016/j.prostr.2024.09.087_bib12) 2013; 27 Malavasi (10.1016/j.prostr.2024.09.087_bib23) 2003; 129 10.1016/j.prostr.2024.09.087_bib6 Morales (10.1016/j.prostr.2024.09.087_bib25) 2013; 139 Lazzarin (10.1016/j.prostr.2024.09.087_bib22) 2023; 35 Chang (10.1016/j.prostr.2024.09.087_bib1) 2013; 139 10.1016/j.prostr.2024.09.087_bib2 Lazzarin (10.1016/j.prostr.2024.09.087_bib18) 2023; 59 Koken (10.1016/j.prostr.2024.09.087_bib17) 2014; 140 Ettema (10.1016/j.prostr.2024.09.087_bib9) 2017; 143 Pregnolato (10.1016/j.prostr.2024.09.087_bib27) 2022; 22 Viero (10.1016/j.prostr.2024.09.087_bib30) 2013; 59 Kirkil (10.1016/j.prostr.2024.09.087_bib15) 2015; 27 Lazzarin (10.1016/j.prostr.2024.09.087_bib21) 2023; 171 Shahriar (10.1016/j.prostr.2024.09.087_bib28) 2021; 28 Zeng (10.1016/j.prostr.2024.09.087_bib33) 2017; 29 Chiew (10.1016/j.prostr.2024.09.087_bib4) 2000; 126 Wu (10.1016/j.prostr.2024.09.087_bib32) 2021; 59 |
| References_xml | – volume: 122 start-page: 148 year: 2018 end-page: 165 ident: bib11 article-title: A fully 3-D numerical model to predict flood wave propagation and assess efficiency of flood protection measures publication-title: Advances in Water Resources – volume: 22 start-page: 1559 year: 2022 end-page: 1576 ident: bib27 article-title: Assessing flooding impact to riverine bridges: an integrated analysis publication-title: Natural Hazards and Earth System Sciences – volume: 27 start-page: 075102 year: 2015 ident: bib15 article-title: Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder publication-title: Physics of Fluids – year: 2024 ident: bib19 publication-title: A numerical investigation of flow field and bed stresses at a river bridge: the effects of piers and of pressure-flow with deck overtopping. Advances in Water Resources – volume: 28 start-page: 100549 year: 2021 ident: bib28 article-title: Bridge Pier Scour: An overview of factors affecting the phenomenon and comparative evaluation of selected models publication-title: Transportation Geotechnics – volume: 59 start-page: 82 year: 2013 end-page: 94 ident: bib30 article-title: Mathematical modeling of flooding due to river bank failure publication-title: Advances in Water Resources – volume: 139 start-page: 812 year: 2013 end-page: 826 ident: bib1 article-title: Flow Structure around Bridge Piers of Varying Geometrical Complexity publication-title: Journal of Hydraulic Engineering – reference: Constantinescu, G., Koken, M., Zeng, J., 2011. The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation. Water Resources Research 47. – volume: 171 start-page: 104355 year: 2023 ident: bib21 article-title: Curvature-induced secondary flow in 2D depth-averaged hydro-morphodynamic models: An assessment of different approaches and key factors publication-title: Advances in Water Resources – volume: 59 start-page: 651 year: 2021 end-page: 661 ident: bib32 article-title: A multi-parameter design formula for riprap size selection at wing-wall abutments publication-title: Journal of Hydraulic Research – volume: 59 year: 2023 ident: bib18 article-title: Influence of bed roughness on flow and turbulence structure around a 2 partially-buried, isolated freshwater mussel publication-title: Water Resources Research – volume: 87 start-page: 1881 year: 2017 end-page: 1906 ident: bib31 article-title: A review of bridge scour: mechanism, estimation, monitoring and countermeasures publication-title: Natural Hazards – volume: 137 start-page: 103525 year: 2020 ident: bib7 article-title: Internal boundary conditions for a GPU-accelerated 2D shallow water model: Implementation and applications publication-title: Advances in Water Resources – reference: Lazzarin, T., Defina, A., Viero, D.P., 2023b. Assessing 40 Years of Flood Risk Evolution at the Micro-Scale Using an Innovative Modeling Approach: The Effects of Urbanization and Land Planning. Geosciences 13. – volume: 53 start-page: 186 year: 2015 end-page: 195 ident: bib14 article-title: Flow dynamics through a submerged bridge opening with overtopping publication-title: Journal of Hydraulic Research – volume: 143 start-page: 03117006 year: 2017 ident: bib9 article-title: Flow-Field Complexity and Design Estimation of Pier-Scour Depth: Sixty Years since Laursen and Toch publication-title: Journal of Hydraulic Engineering – reference: Menter, F., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. Heat and Mass Transfer 625–632. – volume: 126 start-page: 43 year: 2000 end-page: 55 ident: bib4 article-title: Failure Behavior of Riprap Layer at Bridge Piers under Live-Bed Conditions publication-title: Journal of Hydraulic Engineering – volume: 6 start-page: 475 year: 2012 end-page: 489 ident: bib8 article-title: 3D Numerical Modelling of Flow Around Skewed Bridge Crossing publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 129 start-page: 854 year: 2003 end-page: 861 ident: bib23 article-title: Hydrodynamic Loading on River Bridges publication-title: Journal of Hydraulic Engineering – volume: 139 start-page: 470 year: 2013 end-page: 481 ident: bib25 article-title: Insights from Depth-Averaged Numerical Simulation of Flow at Bridge Abutments in Compound Channels publication-title: Journal of Hydraulic Engineering – volume: 34 start-page: 98 year: 2011 end-page: 113 ident: bib13 article-title: High-resolution numerical simulation of turbulence in natural waterways publication-title: Advances in Water Resources – volume: 134 start-page: 572 year: 2008 end-page: 587 ident: bib16 article-title: Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole publication-title: Journal of Hydraulic Engineering – volume: 135 start-page: 106 year: 2009 end-page: 117 ident: bib29 article-title: Turbulent Stresses at the Bottom Surface near an Abutment: Laboratory-Scale Numerical Experiment publication-title: Journal of Hydraulic Engineering – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bib10 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: Journal of Computational Physics – reference: Chang, W.-Y., Constantinescu, G., Tsai, W.F., Lien, H.C., 2011. Coherent structure dynamics and sediment erosion mechanisms around an in-stream rectangular cylinder at low and moderate angles of attack. Water Resources Research 47. – reference: Paik, J., Escauriaza, C., Sotiropoulos, F., 2007. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids 19. – volume: 140 start-page: 04014031 year: 2014 ident: bib17 article-title: Flow and Turbulence Structure around Abutments with Sloped Sidewalls publication-title: Journal of Hydraulic Engineering – volume: 120 start-page: 65 year: 2018 end-page: 82 ident: bib3 article-title: Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour publication-title: Advances in Water Resources – volume: 145 start-page: 04019024 year: 2019 ident: bib5 article-title: Effect of Bridge Abutment Length on Turbulence Structure and Flow through the Opening publication-title: Journal of Hydraulic Engineering – volume: 29 start-page: 066601 year: 2017 ident: bib33 article-title: Flow and coherent structures around circular cylinders in shallow water publication-title: Physics of Fluids – volume: 27 start-page: 1303 year: 2013 end-page: 1314 ident: bib12 article-title: Investigation of turbulence flow and sediment entrainment around a bridge pier publication-title: Stochastic Environmental Research and Risk Assessment – volume: 35 start-page: 024114 year: 2023 ident: bib22 article-title: Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions publication-title: Physics of Fluids – ident: 10.1016/j.prostr.2024.09.087_bib24 – volume: 135 start-page: 106 year: 2009 ident: 10.1016/j.prostr.2024.09.087_bib29 article-title: Turbulent Stresses at the Bottom Surface near an Abutment: Laboratory-Scale Numerical Experiment publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(2009)135:2(106) – year: 2024 ident: 10.1016/j.prostr.2024.09.087_bib19 – ident: 10.1016/j.prostr.2024.09.087_bib6 doi: 10.1029/2010WR010114 – volume: 39 start-page: 201 year: 1981 ident: 10.1016/j.prostr.2024.09.087_bib10 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(81)90145-5 – volume: 59 year: 2023 ident: 10.1016/j.prostr.2024.09.087_bib18 article-title: Influence of bed roughness on flow and turbulence structure around a 2 partially-buried, isolated freshwater mussel publication-title: Water Resources Research doi: 10.1029/2022WR034151 – volume: 22 start-page: 1559 year: 2022 ident: 10.1016/j.prostr.2024.09.087_bib27 article-title: Assessing flooding impact to riverine bridges: an integrated analysis publication-title: Natural Hazards and Earth System Sciences doi: 10.5194/nhess-22-1559-2022 – volume: 140 start-page: 04014031 year: 2014 ident: 10.1016/j.prostr.2024.09.087_bib17 article-title: Flow and Turbulence Structure around Abutments with Sloped Sidewalls publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)HY.1943-7900.0000876 – volume: 120 start-page: 65 year: 2018 ident: 10.1016/j.prostr.2024.09.087_bib3 article-title: Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2017.05.019 – volume: 145 start-page: 04019024 year: 2019 ident: 10.1016/j.prostr.2024.09.087_bib5 article-title: Effect of Bridge Abutment Length on Turbulence Structure and Flow through the Opening publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)HY.1943-7900.0001591 – volume: 27 start-page: 075102 year: 2015 ident: 10.1016/j.prostr.2024.09.087_bib15 article-title: Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder publication-title: Physics of Fluids doi: 10.1063/1.4923063 – volume: 171 start-page: 104355 year: 2023 ident: 10.1016/j.prostr.2024.09.087_bib21 article-title: Curvature-induced secondary flow in 2D depth-averaged hydro-morphodynamic models: An assessment of different approaches and key factors publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2022.104355 – volume: 139 start-page: 470 year: 2013 ident: 10.1016/j.prostr.2024.09.087_bib25 article-title: Insights from Depth-Averaged Numerical Simulation of Flow at Bridge Abutments in Compound Channels publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)HY.1943-7900.0000693 – ident: 10.1016/j.prostr.2024.09.087_bib20 doi: 10.3390/geosciences13040112 – volume: 126 start-page: 43 year: 2000 ident: 10.1016/j.prostr.2024.09.087_bib4 article-title: Failure Behavior of Riprap Layer at Bridge Piers under Live-Bed Conditions publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(2000)126:1(43) – volume: 59 start-page: 82 year: 2013 ident: 10.1016/j.prostr.2024.09.087_bib30 article-title: Mathematical modeling of flooding due to river bank failure publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2013.05.011 – volume: 28 start-page: 100549 year: 2021 ident: 10.1016/j.prostr.2024.09.087_bib28 article-title: Bridge Pier Scour: An overview of factors affecting the phenomenon and comparative evaluation of selected models publication-title: Transportation Geotechnics doi: 10.1016/j.trgeo.2021.100549 – volume: 59 start-page: 651 year: 2021 ident: 10.1016/j.prostr.2024.09.087_bib32 article-title: A multi-parameter design formula for riprap size selection at wing-wall abutments publication-title: Journal of Hydraulic Research doi: 10.1080/00221686.2020.1818310 – volume: 143 start-page: 03117006 year: 2017 ident: 10.1016/j.prostr.2024.09.087_bib9 article-title: Flow-Field Complexity and Design Estimation of Pier-Scour Depth: Sixty Years since Laursen and Toch publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)HY.1943-7900.0001330 – volume: 129 start-page: 854 year: 2003 ident: 10.1016/j.prostr.2024.09.087_bib23 article-title: Hydrodynamic Loading on River Bridges publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(2003)129:11(854) – ident: 10.1016/j.prostr.2024.09.087_bib26 doi: 10.1063/1.2716813 – ident: 10.1016/j.prostr.2024.09.087_bib2 doi: 10.1029/2011WR010586 – volume: 34 start-page: 98 year: 2011 ident: 10.1016/j.prostr.2024.09.087_bib13 article-title: High-resolution numerical simulation of turbulence in natural waterways publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2010.09.018 – volume: 122 start-page: 148 year: 2018 ident: 10.1016/j.prostr.2024.09.087_bib11 article-title: A fully 3-D numerical model to predict flood wave propagation and assess efficiency of flood protection measures publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2018.10.014 – volume: 29 start-page: 066601 year: 2017 ident: 10.1016/j.prostr.2024.09.087_bib33 article-title: Flow and coherent structures around circular cylinders in shallow water publication-title: Physics of Fluids doi: 10.1063/1.4984926 – volume: 87 start-page: 1881 year: 2017 ident: 10.1016/j.prostr.2024.09.087_bib31 article-title: A review of bridge scour: mechanism, estimation, monitoring and countermeasures publication-title: Natural Hazards doi: 10.1007/s11069-017-2842-2 – volume: 53 start-page: 186 year: 2015 ident: 10.1016/j.prostr.2024.09.087_bib14 article-title: Flow dynamics through a submerged bridge opening with overtopping publication-title: Journal of Hydraulic Research doi: 10.1080/00221686.2014.967821 – volume: 27 start-page: 1303 year: 2013 ident: 10.1016/j.prostr.2024.09.087_bib12 article-title: Investigation of turbulence flow and sediment entrainment around a bridge pier publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-012-0666-x – volume: 134 start-page: 572 year: 2008 ident: 10.1016/j.prostr.2024.09.087_bib16 article-title: Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(2008)134:5(572) – volume: 137 start-page: 103525 year: 2020 ident: 10.1016/j.prostr.2024.09.087_bib7 article-title: Internal boundary conditions for a GPU-accelerated 2D shallow water model: Implementation and applications publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2020.103525 – volume: 6 start-page: 475 year: 2012 ident: 10.1016/j.prostr.2024.09.087_bib8 article-title: 3D Numerical Modelling of Flow Around Skewed Bridge Crossing publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2012.11015436 – volume: 139 start-page: 812 year: 2013 ident: 10.1016/j.prostr.2024.09.087_bib1 article-title: Flow Structure around Bridge Piers of Varying Geometrical Complexity publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)HY.1943-7900.0000742 – volume: 35 start-page: 024114 year: 2023 ident: 10.1016/j.prostr.2024.09.087_bib22 article-title: Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions publication-title: Physics of Fluids doi: 10.1063/5.0131953 |
| SSID | ssj0003010021 |
| Score | 2.2495947 |
| Snippet | Failure of river bridges is often due to hydraulic reasons, such as the development of severe scouring around piers and abutments. In many cases, the presence... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 625 |
| SubjectTerms | Bed Shear Stress Bridge Computational Fluid Dynamics Hydraulic Modelling Numerical Simulations Pier Scour |
| Title | Advanced Hydrodynamic Modelling of Flow at a River Bridge: Insights from 3D Computational Fluid Dynamics |
| URI | https://dx.doi.org/10.1016/j.prostr.2024.09.087 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2452-3216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003010021 issn: 2452-3216 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoFLBQJEeWkP3CIj25t6Y24RISpSVVUoQr1Z632IVKldYae0PfBf-KfM7Hhdl1YVPXCxko2ySTxfZr6ZnQdj761yrlTCRWCrVDRxRkb5RJgoUQLsrdNaJ75QeF8eHEyPjvLD0eh3qIU5W8uqmp6f56f_VdSwBsLG0tl7iLvfFBbgMQgdriB2uP6T4GfhVH_vwoB2pInzfuYZtd8GdrhY1z-xilGNv2JaBkYIcMS6mGHuAHrrDZWdiPmYpj6EiOFivVmZ8Zz2bIbE1hccANbwmHujqZnHF9-KYtX2Uft9dXkJvjkNRK5PTlRT92cgxFNbzMLXm6tofXj9G5jvelATPz78MAxYUIU0aTQ85Y1EmnS9r29Z61Ryp6BJp2ZUGd2Z54zCoTc0PwUhjtHuNC02ek2pgW1nzq812v7LAPZpiSHj7bigXQrcpYjzAnZ5wB6mErwvzA79dRXGA_2INAlHGIYfEgo0fRbhza9zOwEakJrlE7bdeSN8Rih6yka2esa-BwTxIYJ4jyBeO44I4qrlinsEcULQRx7wwxE_XMz5Nfxwjx8e8POcLRefl5_2om4gR6RT7I-fl9aCf65yERuDCQu7xpVW6hR47dSIPAZKJCcWfdAk1Ulmsfu_zGIdOydzLV6wraqu7EvGJ1buJqJUqTRA2FNb6kwlWk2tio0QmdlhUbhJIAvfdqW4Szo7TIY7WXTUkShhAfi4852v7vlJr9ljfEZRuDdsC_5U9i17pM_aVfPjnQfHH_F3lQo |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Hydrodynamic+Modelling+of+Flow+at+a+River+Bridge%3A+Insights+from+3D+Computational+Fluid+Dynamics&rft.jtitle=Procedia+Structural+Integrity&rft.au=Lazzarin%2C+Tommaso&rft.au=Constantinescu%2C+George&rft.au=Viero%2C+Daniele+P.&rft.date=2024&rft.issn=2452-3216&rft.eissn=2452-3216&rft.volume=62&rft.spage=625&rft.epage=632&rft_id=info:doi/10.1016%2Fj.prostr.2024.09.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prostr_2024_09_087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-3216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-3216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-3216&client=summon |