A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems
•The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere.•A hybrid algorithm based on the glowworm swarm...
Saved in:
| Published in: | Applied soft computing Vol. 58; pp. 104 - 114 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.09.2017
|
| Subjects: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere.•A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed.•The experiment results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP.
The Travelling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems and has attracted a lot of interests from researchers. Many studies have proposed various methods for solving the two-dimensional TSP. In this study, we extend the two-dimensional TSP to the three-dimensional TSP, namely the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere. A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed, in which the carriers of the luciferin are transformed from glowworms to edges between cities, and the probabilistic formula and the luciferin updating formula are modified. In addition, the complete 2-opt algorithm is performed to optimize the selected optimal routes every few iterations. Numerical experimental results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP. Meanwhile, the complete 2-opt algorithm can speed up the convergence rate. |
|---|---|
| AbstractList | •The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere.•A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed.•The experiment results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP.
The Travelling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems and has attracted a lot of interests from researchers. Many studies have proposed various methods for solving the two-dimensional TSP. In this study, we extend the two-dimensional TSP to the three-dimensional TSP, namely the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere. A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed, in which the carriers of the luciferin are transformed from glowworms to edges between cities, and the probabilistic formula and the luciferin updating formula are modified. In addition, the complete 2-opt algorithm is performed to optimize the selected optimal routes every few iterations. Numerical experimental results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP. Meanwhile, the complete 2-opt algorithm can speed up the convergence rate. |
| Author | Tang, Zhonghua Chen, Xin Luo, Qifang Zhou, Yongquan |
| Author_xml | – sequence: 1 givenname: Xin surname: Chen fullname: Chen, Xin organization: Guangxi High School Key Laboratory of Complex System and Computational Intelligence, Nanning 530006, China – sequence: 2 givenname: Yongquan surname: Zhou fullname: Zhou, Yongquan email: yongquanzhou@126.com organization: Guangxi High School Key Laboratory of Complex System and Computational Intelligence, Nanning 530006, China – sequence: 3 givenname: Zhonghua surname: Tang fullname: Tang, Zhonghua organization: College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China – sequence: 4 givenname: Qifang surname: Luo fullname: Luo, Qifang organization: Guangxi High School Key Laboratory of Complex System and Computational Intelligence, Nanning 530006, China |
| BookMark | eNp9kMtqwzAQRUVJoenjB7rSD9iVHFuyoZsQ-oJAN-1ayHokCrJkJJHQrvrplZsuShfZ3BmYORfuvQQz550C4BajEiNM7nYlj16UFcK0RHWJGnoG5rilVdGRFs_y3pC2qLuaXIDLGHcoQ13VzsHXEm4_-mAk5Hbjg0nbAQo_9MYZt4Eb6w8HHwYYDzyrH5MZzCdPxjvInZw-R6uSglWRb38stA8wjlsVjOAWpsD3ytrJMXKr4sAdHIPvrRriNTjX3EZ18zuvwPvjw9vquVi_Pr2slutCVLhJWWvOSU007YXGlGIpBceiXqhKStkiIRZSkabREnWyl52WnNAGk5YQirRAiytQHX1F8DEGpdkYzMDDB8OITR2yHZs6ZFOHDNUsd5ih9h8kTPqJnyMZexq9P6Iqh9obFVgURjmhpAlKJCa9OYV_A2DulG0 |
| CitedBy_id | crossref_primary_10_3390_su16072684 crossref_primary_10_1016_j_asoc_2021_107667 crossref_primary_10_1016_j_rser_2024_115058 crossref_primary_10_1016_j_asej_2025_103637 crossref_primary_10_1108_K_08_2021_0728 crossref_primary_10_1007_s11042_023_16919_0 crossref_primary_10_1155_2019_6086089 crossref_primary_10_1007_s12065_024_00960_5 crossref_primary_10_1007_s10489_021_02415_1 crossref_primary_10_1007_s12530_023_09524_x crossref_primary_10_1177_1687814018791710 crossref_primary_10_1109_ACCESS_2020_3043029 crossref_primary_10_1109_JIOT_2021_3132015 crossref_primary_10_3390_s22052050 crossref_primary_10_1109_ACCESS_2025_3579248 crossref_primary_10_3390_sym12111892 crossref_primary_10_1016_j_robot_2025_105001 crossref_primary_10_1016_j_tre_2019_04_004 crossref_primary_10_1007_s13369_025_10481_7 crossref_primary_10_1016_j_asoc_2021_107298 crossref_primary_10_1093_jcde_qwac013 crossref_primary_10_1007_s12065_018_0165_1 crossref_primary_10_1016_j_ijleo_2022_170402 crossref_primary_10_1016_j_asoc_2019_03_036 crossref_primary_10_1016_j_swevo_2025_102004 crossref_primary_10_3389_fbioe_2022_830037 crossref_primary_10_3390_systems12020037 crossref_primary_10_1002_dac_5886 crossref_primary_10_1007_s42979_024_03420_0 crossref_primary_10_1016_j_cie_2019_04_008 crossref_primary_10_1007_s11227_021_03744_1 crossref_primary_10_3390_a15050145 crossref_primary_10_1016_j_jksuci_2022_08_004 crossref_primary_10_1016_j_eswa_2023_119765 crossref_primary_10_1016_j_knosys_2021_107330 crossref_primary_10_3390_batteries9120587 crossref_primary_10_1016_j_neucom_2018_04_085 crossref_primary_10_1109_ACCESS_2020_2970482 crossref_primary_10_1007_s00500_023_09305_3 crossref_primary_10_1007_s41870_023_01454_w crossref_primary_10_3390_math11061473 crossref_primary_10_1109_ACCESS_2021_3094471 crossref_primary_10_1016_j_asoc_2018_07_023 crossref_primary_10_1007_s11047_019_09752_8 crossref_primary_10_1016_j_asoc_2018_09_011 crossref_primary_10_1080_01490419_2021_1993386 crossref_primary_10_1007_s10489_018_1351_7 crossref_primary_10_1016_j_asoc_2018_03_048 |
| Cites_doi | 10.1016/j.simpat.2016.01.007 10.1016/j.asoc.2015.01.068 10.1109/TEVC.2002.804321 10.1016/j.asoc.2015.03.038 10.1023/A:1006529012972 10.1016/j.ejor.2003.10.016 10.1016/j.asoc.2016.02.021 10.1016/j.ins.2008.04.005 10.1016/j.ins.2016.09.043 10.1016/j.eswa.2017.01.053 10.1016/j.asoc.2014.06.049 10.1016/j.asoc.2015.06.011 10.1109/TSMCB.2002.804367 10.1016/j.cor.2009.03.004 10.1504/IJBIC.2010.037022 10.1016/j.asoc.2013.05.022 10.1016/j.eswa.2015.10.012 10.1016/j.knosys.2015.07.032 10.12785/amis/070248 10.1016/j.ejor.2017.02.017 10.12785/amis/070147 10.1016/j.cam.2010.12.027 10.1287/opre.6.6.791 10.1016/j.tcs.2013.11.028 10.1016/j.tre.2016.01.010 10.1016/j.eswa.2014.07.054 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2017.04.057 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 114 |
| ExternalDocumentID | 10_1016_j_asoc_2017_04_057 S1568494617302399 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c215t-c24aa646f7bcf1771ddca1c43e2ddd80cc3de655fd09dbd9fda6751686670fc03 |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:03:43 EST 2025 Sat Nov 29 07:06:31 EST 2025 Fri Feb 23 02:24:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Travelling salesman problem Approximate algorithm Spherical TSP Complete 2-opt algorithm Glowworm swarm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c215t-c24aa646f7bcf1771ddca1c43e2ddd80cc3de655fd09dbd9fda6751686670fc03 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2017_04_057 crossref_citationtrail_10_1016_j_asoc_2017_04_057 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_04_057 |
| PublicationCentury | 2000 |
| PublicationDate | September 2017 2017-09-00 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Goyal (bib0005) 2010; 11 Cui, Feng, Guo (bib0165) 2015; 88 Weyland (bib0115) 2014; 540 Zhou, Huang (bib0180) 2012; 27 Wang, Zhang, Créput (bib0085) 2017; 15 Jung, Moon (bib0040) 2002; 6 Xia, Zhu, Gu (bib0020) 2016; 374 Croes (bib0190) 1958; 6 Bianchi, Knowles, Bowler (bib0185) 2005; 162 Kinable, Smeulders, Delcour (bib0015) 2017; 261 Bonyadi, Hosseini (bib0060) 2010; 2 Ray, De (bib0155) 2016; 62 Li, Cheng, Tan (bib0070) 2012 Uğur (bib0135) 2008; 178 Jayakumar, Venkatesh (bib0175) 2014; 23 Cheng, Liang (bib0160) 2013; 30 Avşar (bib0080) 2015; 34 Zhou, Zhou, Zhang (bib0170) 2013; 7 Roberti, Wen (bib0110) 2016; 89 Jin, Leung, Wong (bib0045) 2003; 33 Dorigo, Stützle (bib0055) 1999 Gharehchopogh, Farhad (bib0100) 2012; 53 Krishnanand, Ghose (bib0145) 2009; 1 Escario, Jimenez, Giron-Sierra (bib0065) 2015; 42 Ouyang, Zhou, Luo (bib0140) 2013; 7 Ahmed (bib0035) 2010; 3 Marinakis, Marinaki (bib0120) 2010; 37 Englert, Röglin, Vöcking (bib0195) 2016; 13 Pang, Wang, Zhou (bib0075) 2004 Uğur, Korukoğlu, Çalıskan (bib0105) 2009; 14 Goldberg (bib0025) 1989 Mavrovouniotis, Yang (bib0125) 2013; 13 Mahi, Ömer Kaan Baykan Kodaz (bib0095) 2015; 30 Paul, Moganarangan, Kumar (bib0050) 2015; 32 Larrañaga, Kuijpers, Murga (bib0010) 1999; 13 Ezugwu, Adewumi, Frîncu (bib0090) 2017; 77 Majumdar, Bhunia (bib0130) 2011; 235 Wang, Ersoy, He (bib0030) 2016; 43 Marinaki, Marinakis (bib0150) 2016; 46 Mahi (10.1016/j.asoc.2017.04.057_bib0095) 2015; 30 Jin (10.1016/j.asoc.2017.04.057_bib0045) 2003; 33 Zhou (10.1016/j.asoc.2017.04.057_bib0170) 2013; 7 Wang (10.1016/j.asoc.2017.04.057_bib0085) 2017; 15 Krishnanand (10.1016/j.asoc.2017.04.057_bib0145) 2009; 1 Pang (10.1016/j.asoc.2017.04.057_bib0075) 2004 Ahmed (10.1016/j.asoc.2017.04.057_bib0035) 2010; 3 Englert (10.1016/j.asoc.2017.04.057_bib0195) 2016; 13 Cheng (10.1016/j.asoc.2017.04.057_bib0160) 2013; 30 Weyland (10.1016/j.asoc.2017.04.057_bib0115) 2014; 540 Goyal (10.1016/j.asoc.2017.04.057_bib0005) 2010; 11 Avşar (10.1016/j.asoc.2017.04.057_bib0080) 2015; 34 Uğur (10.1016/j.asoc.2017.04.057_bib0135) 2008; 178 Li (10.1016/j.asoc.2017.04.057_bib0070) 2012 Dorigo (10.1016/j.asoc.2017.04.057_bib0055) 1999 Majumdar (10.1016/j.asoc.2017.04.057_bib0130) 2011; 235 Wang (10.1016/j.asoc.2017.04.057_bib0030) 2016; 43 Paul (10.1016/j.asoc.2017.04.057_bib0050) 2015; 32 Croes (10.1016/j.asoc.2017.04.057_bib0190) 1958; 6 Goldberg (10.1016/j.asoc.2017.04.057_bib0025) 1989 Jayakumar (10.1016/j.asoc.2017.04.057_bib0175) 2014; 23 Kinable (10.1016/j.asoc.2017.04.057_bib0015) 2017; 261 Uğur (10.1016/j.asoc.2017.04.057_bib0105) 2009; 14 Cui (10.1016/j.asoc.2017.04.057_bib0165) 2015; 88 Larrañaga (10.1016/j.asoc.2017.04.057_bib0010) 1999; 13 Escario (10.1016/j.asoc.2017.04.057_bib0065) 2015; 42 Mavrovouniotis (10.1016/j.asoc.2017.04.057_bib0125) 2013; 13 Ezugwu (10.1016/j.asoc.2017.04.057_bib0090) 2017; 77 Ouyang (10.1016/j.asoc.2017.04.057_bib0140) 2013; 7 Bianchi (10.1016/j.asoc.2017.04.057_bib0185) 2005; 162 Xia (10.1016/j.asoc.2017.04.057_bib0020) 2016; 374 Jung (10.1016/j.asoc.2017.04.057_bib0040) 2002; 6 Ray (10.1016/j.asoc.2017.04.057_bib0155) 2016; 62 Gharehchopogh (10.1016/j.asoc.2017.04.057_bib0100) 2012; 53 Zhou (10.1016/j.asoc.2017.04.057_bib0180) 2012; 27 Marinaki (10.1016/j.asoc.2017.04.057_bib0150) 2016; 46 Bonyadi (10.1016/j.asoc.2017.04.057_bib0060) 2010; 2 Roberti (10.1016/j.asoc.2017.04.057_bib0110) 2016; 89 Marinakis (10.1016/j.asoc.2017.04.057_bib0120) 2010; 37 |
| References_xml | – volume: 30 start-page: 484 year: 2015 end-page: 490 ident: bib0095 article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem publication-title: Appl. Soft Comput. – volume: 34 start-page: 862 year: 2015 end-page: 873 ident: bib0080 article-title: Danial Esmaeili Aliabadi Parallelized neural network system for solving Euclidean traveling salesman problem publication-title: Appl. Soft Comput. – volume: 32 start-page: 383 year: 2015 end-page: 402 ident: bib0050 article-title: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: an empirical study based on traveling salesman problems publication-title: Appl. Soft Comput. – start-page: 1583 year: 2004 end-page: 1585 ident: bib0075 article-title: Fuzzy discrete particle swarm optimization for solving traveling salesman problem: international Conference on Computer and Information Technology publication-title: IEEE – volume: 14 start-page: 219 year: 2009 end-page: 228 ident: bib0105 article-title: Genetic algorithm based solution for TSP on a sphere publication-title: Math. Comput. Appl. – volume: 13 start-page: 129 year: 1999 end-page: 170 ident: bib0010 article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators publication-title: Artif. Intell. Rev. – start-page: 11 year: 1999 end-page: 32 ident: bib0055 article-title: The ant colony optimization metaheuristic publication-title: New Ideas in Optimization – start-page: 566 year: 2012 end-page: 573 ident: bib0070 article-title: A Discrete Artificial Bee Colony Algorithm for TSP Problem Bio-Inspired Computing and Applications – volume: 15 start-page: 1 year: 2017 end-page: 15 ident: bib0085 article-title: A massively parallel neural network approach to large-scale Euclidean traveling salesman problems publication-title: Neurocomputing – volume: 235 start-page: 3063 year: 2011 end-page: 3078 ident: bib0130 article-title: Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times publication-title: J. Comput. App. Math. – year: 1989 ident: bib0025 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning – volume: 178 start-page: 3275 year: 2008 end-page: 3287 ident: bib0135 article-title: Path planning on a cuboid using genetic algorithms publication-title: Inf. Sci. – volume: 3 start-page: 96 year: 2010 end-page: 105 ident: bib0035 article-title: Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator publication-title: Int. J. Biom. Bioinf. – volume: 13 start-page: 4023 year: 2013 end-page: 4037 ident: bib0125 article-title: Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors publication-title: Appl. Soft Comput. – volume: 33 start-page: 877 year: 2003 end-page: 888 ident: bib0045 article-title: An efficient self-organizing map designed by genetic algorithms for the traveling salesman problem publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – volume: 7 start-page: 379 year: 2013 end-page: 388 ident: bib0170 article-title: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems publication-title: Appl. Math. Inf. Sci. – volume: 53 start-page: 39 year: 2012 end-page: 44 ident: bib0100 article-title: New approach for solving dynamic traveling salesman problem with hybrid genetic algorithms and ant colony optimization publication-title: Int. J. Comput. Appl. – volume: 162 start-page: 206 year: 2005 end-page: 219 ident: bib0185 article-title: Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms publication-title: Eur. J. Oper. Res. – volume: 540 start-page: 156 year: 2014 end-page: 168 ident: bib0115 article-title: On the computational complexity of the probabilistic traveling salesman problem with deadlines publication-title: Theor. Comput. Sci. – volume: 30 start-page: 996 year: 2013 end-page: 998 ident: bib0160 article-title: Artificial glowworm swarm optimization algorithm for 0–1 knapsack problem publication-title: Appl.Res.Comput. – volume: 13 start-page: 10 year: 2016 ident: bib0195 article-title: Smoothed analysis of the 2-Opt algorithm for the general TSP publication-title: ACM Trans. Algorithms – volume: 261 start-page: 475 year: 2017 end-page: 485 ident: bib0015 article-title: Exact algorithms for the equitable traveling salesman problem publication-title: Eur. J. Oper. Res. – volume: 374 start-page: 164 year: 2016 end-page: 178 ident: bib0020 article-title: Toward solving the Steiner travelling salesman problem on urban road maps using the branch decomposition of graphs publication-title: Inf. Sci. – volume: 6 start-page: 791 year: 1958 end-page: 812 ident: bib0190 article-title: A method for solving traveling salesman problems publication-title: Oper. Res. – volume: 6 start-page: 557 year: 2002 end-page: 565 ident: bib0040 article-title: Toward minimal restriction of genetic encoding and crossovers for the two-dimensional Euclidean TSP publication-title: Evol. Comput. IEEE Trans. – volume: 42 start-page: 390 year: 2015 end-page: 410 ident: bib0065 article-title: Ant colony extended: experiments on the travelling salesman problem publication-title: Expert Syst. Appl. – volume: 7 start-page: 777 year: 2013 end-page: 784 ident: bib0140 article-title: A novel discrete cuckoo search algorithm for spherical traveling salesman problem publication-title: Appl. Math. Inf. Sci. – volume: 77 start-page: 189 year: 2017 end-page: 210 ident: bib0090 article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem publication-title: Expert Syst. Appl. – volume: 23 start-page: 375 year: 2014 end-page: 386 ident: bib0175 article-title: Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem publication-title: Appl. Soft Comput. – volume: 62 start-page: 117 year: 2016 end-page: 136 ident: bib0155 article-title: An energy efficient sensor movement approach using multi-parameter reverse glowworm swarm optimization algorithm in mobile wireless sensor network publication-title: Simul. Modell. Pract. Theory – volume: 88 start-page: 195 year: 2015 end-page: 209 ident: bib0165 article-title: A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction publication-title: Knowl.-Based Syst. – volume: 27 start-page: 1816 year: 2012 end-page: 1821 ident: bib0180 article-title: Artificial glowworm swarm optimization algorithm for TSP publication-title: Control Decis. – volume: 89 start-page: 32 year: 2016 end-page: 52 ident: bib0110 article-title: The electric traveling salesman problem with time windows publication-title: Transp. Res. Part E: Logist. Transp. Rev. – volume: 1 start-page: 93 year: 2009 end-page: 119 ident: bib0145 article-title: Glowworm swarm optimization: a new method for optimizing multi-modal functions publication-title: Int. J. Comput. Intell. Stud. – volume: 11 start-page: 799 year: 2010 end-page: 803 ident: bib0005 article-title: A survey on travelling salesman problem publication-title: Midwest Instruction Comput. Symp. – volume: 2 start-page: 422 year: 2010 end-page: 433 ident: bib0060 article-title: A dynamic max-min ant system for solving the travelling salesman problem publication-title: Int. J. Bio-Inspired Comput. – volume: 43 start-page: 415 year: 2016 end-page: 423 ident: bib0030 article-title: Multi-offspring genetic algorithm and its application to the traveling salesman problem publication-title: Appl. Soft Comput. – volume: 37 start-page: 432 year: 2010 end-page: 442 ident: bib0120 article-title: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem publication-title: Comput. Oper. Res. – volume: 46 start-page: 145 year: 2016 end-page: 163 ident: bib0150 article-title: A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands publication-title: Expert Syst. Appl. – volume: 62 start-page: 117 year: 2016 ident: 10.1016/j.asoc.2017.04.057_bib0155 article-title: An energy efficient sensor movement approach using multi-parameter reverse glowworm swarm optimization algorithm in mobile wireless sensor network publication-title: Simul. Modell. Pract. Theory doi: 10.1016/j.simpat.2016.01.007 – volume: 30 start-page: 484 issue: C year: 2015 ident: 10.1016/j.asoc.2017.04.057_bib0095 article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.068 – year: 1989 ident: 10.1016/j.asoc.2017.04.057_bib0025 – volume: 6 start-page: 557 issue: 6 year: 2002 ident: 10.1016/j.asoc.2017.04.057_bib0040 article-title: Toward minimal restriction of genetic encoding and crossovers for the two-dimensional Euclidean TSP publication-title: Evol. Comput. IEEE Trans. doi: 10.1109/TEVC.2002.804321 – volume: 30 start-page: 996 issue: 4 year: 2013 ident: 10.1016/j.asoc.2017.04.057_bib0160 article-title: Artificial glowworm swarm optimization algorithm for 0–1 knapsack problem publication-title: Appl.Res.Comput. – volume: 32 start-page: 383 year: 2015 ident: 10.1016/j.asoc.2017.04.057_bib0050 article-title: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: an empirical study based on traveling salesman problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.038 – volume: 53 start-page: 39 issue: 1 year: 2012 ident: 10.1016/j.asoc.2017.04.057_bib0100 article-title: New approach for solving dynamic traveling salesman problem with hybrid genetic algorithms and ant colony optimization publication-title: Int. J. Comput. Appl. – volume: 13 start-page: 129 issue: 2 year: 1999 ident: 10.1016/j.asoc.2017.04.057_bib0010 article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006529012972 – volume: 162 start-page: 206 issue: 1 year: 2005 ident: 10.1016/j.asoc.2017.04.057_bib0185 article-title: Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2003.10.016 – start-page: 11 year: 1999 ident: 10.1016/j.asoc.2017.04.057_bib0055 article-title: The ant colony optimization metaheuristic – volume: 27 start-page: 1816 issue: 7 year: 2012 ident: 10.1016/j.asoc.2017.04.057_bib0180 article-title: Artificial glowworm swarm optimization algorithm for TSP publication-title: Control Decis. – volume: 43 start-page: 415 year: 2016 ident: 10.1016/j.asoc.2017.04.057_bib0030 article-title: Multi-offspring genetic algorithm and its application to the traveling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.021 – volume: 13 start-page: 10 issue: 1 year: 2016 ident: 10.1016/j.asoc.2017.04.057_bib0195 article-title: Smoothed analysis of the 2-Opt algorithm for the general TSP publication-title: ACM Trans. Algorithms – start-page: 1583 year: 2004 ident: 10.1016/j.asoc.2017.04.057_bib0075 article-title: Fuzzy discrete particle swarm optimization for solving traveling salesman problem: international Conference on Computer and Information Technology publication-title: IEEE – volume: 178 start-page: 3275 issue: 16 year: 2008 ident: 10.1016/j.asoc.2017.04.057_bib0135 article-title: Path planning on a cuboid using genetic algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.04.005 – volume: 374 start-page: 164 year: 2016 ident: 10.1016/j.asoc.2017.04.057_bib0020 article-title: Toward solving the Steiner travelling salesman problem on urban road maps using the branch decomposition of graphs publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.09.043 – volume: 77 start-page: 189 year: 2017 ident: 10.1016/j.asoc.2017.04.057_bib0090 article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.01.053 – volume: 15 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.asoc.2017.04.057_bib0085 article-title: A massively parallel neural network approach to large-scale Euclidean traveling salesman problems publication-title: Neurocomputing – volume: 23 start-page: 375 year: 2014 ident: 10.1016/j.asoc.2017.04.057_bib0175 article-title: Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.049 – volume: 11 start-page: 799 issue: 5 year: 2010 ident: 10.1016/j.asoc.2017.04.057_bib0005 article-title: A survey on travelling salesman problem publication-title: Midwest Instruction Comput. Symp. – volume: 34 start-page: 862 issue: C year: 2015 ident: 10.1016/j.asoc.2017.04.057_bib0080 article-title: Danial Esmaeili Aliabadi Parallelized neural network system for solving Euclidean traveling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.011 – volume: 33 start-page: 877 issue: 6 year: 2003 ident: 10.1016/j.asoc.2017.04.057_bib0045 article-title: An efficient self-organizing map designed by genetic algorithms for the traveling salesman problem publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2002.804367 – volume: 37 start-page: 432 issue: 3 year: 2010 ident: 10.1016/j.asoc.2017.04.057_bib0120 article-title: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.03.004 – volume: 1 start-page: 93 issue: 1 year: 2009 ident: 10.1016/j.asoc.2017.04.057_bib0145 article-title: Glowworm swarm optimization: a new method for optimizing multi-modal functions publication-title: Int. J. Comput. Intell. Stud. – volume: 2 start-page: 422 issue: 6 year: 2010 ident: 10.1016/j.asoc.2017.04.057_bib0060 article-title: A dynamic max-min ant system for solving the travelling salesman problem publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2010.037022 – start-page: 566 year: 2012 ident: 10.1016/j.asoc.2017.04.057_bib0070 – volume: 13 start-page: 4023 issue: 10 year: 2013 ident: 10.1016/j.asoc.2017.04.057_bib0125 article-title: Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.05.022 – volume: 46 start-page: 145 year: 2016 ident: 10.1016/j.asoc.2017.04.057_bib0150 article-title: A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.012 – volume: 88 start-page: 195 year: 2015 ident: 10.1016/j.asoc.2017.04.057_bib0165 article-title: A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.032 – volume: 7 start-page: 777 issue: 2 year: 2013 ident: 10.1016/j.asoc.2017.04.057_bib0140 article-title: A novel discrete cuckoo search algorithm for spherical traveling salesman problem publication-title: Appl. Math. Inf. Sci. doi: 10.12785/amis/070248 – volume: 261 start-page: 475 issue: 2 year: 2017 ident: 10.1016/j.asoc.2017.04.057_bib0015 article-title: Exact algorithms for the equitable traveling salesman problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.02.017 – volume: 7 start-page: 379 issue: 1 year: 2013 ident: 10.1016/j.asoc.2017.04.057_bib0170 article-title: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems publication-title: Appl. Math. Inf. Sci. doi: 10.12785/amis/070147 – volume: 235 start-page: 3063 issue: 9 year: 2011 ident: 10.1016/j.asoc.2017.04.057_bib0130 article-title: Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times publication-title: J. Comput. App. Math. doi: 10.1016/j.cam.2010.12.027 – volume: 3 start-page: 96 issue: 6 year: 2010 ident: 10.1016/j.asoc.2017.04.057_bib0035 article-title: Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator publication-title: Int. J. Biom. Bioinf. – volume: 6 start-page: 791 issue: 6 year: 1958 ident: 10.1016/j.asoc.2017.04.057_bib0190 article-title: A method for solving traveling salesman problems publication-title: Oper. Res. doi: 10.1287/opre.6.6.791 – volume: 14 start-page: 219 issue: 3 year: 2009 ident: 10.1016/j.asoc.2017.04.057_bib0105 article-title: Genetic algorithm based solution for TSP on a sphere publication-title: Math. Comput. Appl. – volume: 540 start-page: 156 year: 2014 ident: 10.1016/j.asoc.2017.04.057_bib0115 article-title: On the computational complexity of the probabilistic traveling salesman problem with deadlines publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2013.11.028 – volume: 89 start-page: 32 year: 2016 ident: 10.1016/j.asoc.2017.04.057_bib0110 article-title: The electric traveling salesman problem with time windows publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2016.01.010 – volume: 42 start-page: 390 issue: 1 year: 2015 ident: 10.1016/j.asoc.2017.04.057_bib0065 article-title: Ant colony extended: experiments on the travelling salesman problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.07.054 |
| SSID | ssj0016928 |
| Score | 2.4605067 |
| Snippet | •The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104 |
| SubjectTerms | Approximate algorithm Complete 2-opt algorithm Glowworm swarm optimization Spherical TSP Travelling salesman problem |
| Title | A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems |
| URI | https://dx.doi.org/10.1016/j.asoc.2017.04.057 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0h64RUa2Y3vXxwgVAaoqkAKKuFhr726SKrVDbTflxk_hpzL7jClQ0QOXVWTH4yTz5ZvZ8TwQesljEcaS50FMCIcNSs6DMiMiiMsk5DIHF1lX8X8-IsfHdD7PP4xGP1wtzPma1DW9uMg3_1XVcAyUrUpnr6FuLxQOwGtQOqygdlj_SfHT8fKbKsMas_Wiga3_8lTljZd6EITq_7Hdgps6brcM1gYI49RWYroKtw1oUozjAM4NRKhsxFa1INBK7dTQItPNuwUL06oHAXY0TTt0d52P2wLZa9l950ylTikwnDdfeYR-WTa9tgpNvfja75A7s2FtOF8vlr23JUe9DvV-XElm5doIBlhFl6LlSTejQZLbUKRlZdPQ3dKqHVFsLXRkyk5_I38Thzh5xQDXKmmP6Ca2pv_1r522L1lAn5foUt5OCiWjUDKKMClAxg20H5M0B97cn747nL_3T6qyXM_v9d_BFmaZHMLLn-TPzs_AoZndRbftTgRPDYLuoZGo76M7bsoHtqT_AH2fYgMo7NGAPaCwAxTWgMJDQGEAFHaAwhpQAxEAKOwBhXeAwg5Q2AHqIfr05nD2-m1g53YEFTiQHawJY1mSSVJWMiIk4rxiUZVMRMw5p2FVTbjI0lRyoIaS55Iz2LZGGc0yEsoqnDxCe3VTi8cI04jJlEpJBQGBsJkJY0ETlpdhScF4JAcocj9oUdmm9mq2yrr4uyoP0NhfszEtXa58d-r0VFin1DibBcDuiuueXOsuT9Gt3T_jGdrrznrxHN2szrtVe_bCYu4nsbO2Cw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+algorithm+combining+glowworm+swarm+optimization+and+complete+2-opt+algorithm+for+spherical+travelling+salesman+problems&rft.jtitle=Applied+soft+computing&rft.au=Chen%2C+Xin&rft.au=Zhou%2C+Yongquan&rft.au=Tang%2C+Zhonghua&rft.au=Luo%2C+Qifang&rft.date=2017-09-01&rft.issn=1568-4946&rft.volume=58&rft.spage=104&rft.epage=114&rft_id=info:doi/10.1016%2Fj.asoc.2017.04.057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_04_057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |