A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems

•The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere.•A hybrid algorithm based on the glowworm swarm...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 58; pp. 104 - 114
Main Authors: Chen, Xin, Zhou, Yongquan, Tang, Zhonghua, Luo, Qifang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.09.2017
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere.•A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed.•The experiment results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP. The Travelling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems and has attracted a lot of interests from researchers. Many studies have proposed various methods for solving the two-dimensional TSP. In this study, we extend the two-dimensional TSP to the three-dimensional TSP, namely the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere. A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed, in which the carriers of the luciferin are transformed from glowworms to edges between cities, and the probabilistic formula and the luciferin updating formula are modified. In addition, the complete 2-opt algorithm is performed to optimize the selected optimal routes every few iterations. Numerical experimental results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP. Meanwhile, the complete 2-opt algorithm can speed up the convergence rate.
AbstractList •The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere.•A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed.•The experiment results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP. The Travelling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems and has attracted a lot of interests from researchers. Many studies have proposed various methods for solving the two-dimensional TSP. In this study, we extend the two-dimensional TSP to the three-dimensional TSP, namely the spherical TSP in which all points (cities) and paths (solutions) are on the surface of a sphere. A hybrid algorithm based on the glowworm swarm optimization (GSO) and the complete 2-opt algorithm is proposed, in which the carriers of the luciferin are transformed from glowworms to edges between cities, and the probabilistic formula and the luciferin updating formula are modified. In addition, the complete 2-opt algorithm is performed to optimize the selected optimal routes every few iterations. Numerical experimental results show that the proposed algorithm has a better performance than the basic GSO in solving the spherical TSP. Meanwhile, the complete 2-opt algorithm can speed up the convergence rate.
Author Tang, Zhonghua
Chen, Xin
Luo, Qifang
Zhou, Yongquan
Author_xml – sequence: 1
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: Guangxi High School Key Laboratory of Complex System and Computational Intelligence, Nanning 530006, China
– sequence: 2
  givenname: Yongquan
  surname: Zhou
  fullname: Zhou, Yongquan
  email: yongquanzhou@126.com
  organization: Guangxi High School Key Laboratory of Complex System and Computational Intelligence, Nanning 530006, China
– sequence: 3
  givenname: Zhonghua
  surname: Tang
  fullname: Tang, Zhonghua
  organization: College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China
– sequence: 4
  givenname: Qifang
  surname: Luo
  fullname: Luo, Qifang
  organization: Guangxi High School Key Laboratory of Complex System and Computational Intelligence, Nanning 530006, China
BookMark eNp9kMtqwzAQRUVJoenjB7rSD9iVHFuyoZsQ-oJAN-1ayHokCrJkJJHQrvrplZsuShfZ3BmYORfuvQQz550C4BajEiNM7nYlj16UFcK0RHWJGnoG5rilVdGRFs_y3pC2qLuaXIDLGHcoQ13VzsHXEm4_-mAk5Hbjg0nbAQo_9MYZt4Eb6w8HHwYYDzyrH5MZzCdPxjvInZw-R6uSglWRb38stA8wjlsVjOAWpsD3ytrJMXKr4sAdHIPvrRriNTjX3EZ18zuvwPvjw9vquVi_Pr2slutCVLhJWWvOSU007YXGlGIpBceiXqhKStkiIRZSkabREnWyl52WnNAGk5YQirRAiytQHX1F8DEGpdkYzMDDB8OITR2yHZs6ZFOHDNUsd5ih9h8kTPqJnyMZexq9P6Iqh9obFVgURjmhpAlKJCa9OYV_A2DulG0
CitedBy_id crossref_primary_10_3390_su16072684
crossref_primary_10_1016_j_asoc_2021_107667
crossref_primary_10_1016_j_rser_2024_115058
crossref_primary_10_1016_j_asej_2025_103637
crossref_primary_10_1108_K_08_2021_0728
crossref_primary_10_1007_s11042_023_16919_0
crossref_primary_10_1155_2019_6086089
crossref_primary_10_1007_s12065_024_00960_5
crossref_primary_10_1007_s10489_021_02415_1
crossref_primary_10_1007_s12530_023_09524_x
crossref_primary_10_1177_1687814018791710
crossref_primary_10_1109_ACCESS_2020_3043029
crossref_primary_10_1109_JIOT_2021_3132015
crossref_primary_10_3390_s22052050
crossref_primary_10_1109_ACCESS_2025_3579248
crossref_primary_10_3390_sym12111892
crossref_primary_10_1016_j_robot_2025_105001
crossref_primary_10_1016_j_tre_2019_04_004
crossref_primary_10_1007_s13369_025_10481_7
crossref_primary_10_1016_j_asoc_2021_107298
crossref_primary_10_1093_jcde_qwac013
crossref_primary_10_1007_s12065_018_0165_1
crossref_primary_10_1016_j_ijleo_2022_170402
crossref_primary_10_1016_j_asoc_2019_03_036
crossref_primary_10_1016_j_swevo_2025_102004
crossref_primary_10_3389_fbioe_2022_830037
crossref_primary_10_3390_systems12020037
crossref_primary_10_1002_dac_5886
crossref_primary_10_1007_s42979_024_03420_0
crossref_primary_10_1016_j_cie_2019_04_008
crossref_primary_10_1007_s11227_021_03744_1
crossref_primary_10_3390_a15050145
crossref_primary_10_1016_j_jksuci_2022_08_004
crossref_primary_10_1016_j_eswa_2023_119765
crossref_primary_10_1016_j_knosys_2021_107330
crossref_primary_10_3390_batteries9120587
crossref_primary_10_1016_j_neucom_2018_04_085
crossref_primary_10_1109_ACCESS_2020_2970482
crossref_primary_10_1007_s00500_023_09305_3
crossref_primary_10_1007_s41870_023_01454_w
crossref_primary_10_3390_math11061473
crossref_primary_10_1109_ACCESS_2021_3094471
crossref_primary_10_1016_j_asoc_2018_07_023
crossref_primary_10_1007_s11047_019_09752_8
crossref_primary_10_1016_j_asoc_2018_09_011
crossref_primary_10_1080_01490419_2021_1993386
crossref_primary_10_1007_s10489_018_1351_7
crossref_primary_10_1016_j_asoc_2018_03_048
Cites_doi 10.1016/j.simpat.2016.01.007
10.1016/j.asoc.2015.01.068
10.1109/TEVC.2002.804321
10.1016/j.asoc.2015.03.038
10.1023/A:1006529012972
10.1016/j.ejor.2003.10.016
10.1016/j.asoc.2016.02.021
10.1016/j.ins.2008.04.005
10.1016/j.ins.2016.09.043
10.1016/j.eswa.2017.01.053
10.1016/j.asoc.2014.06.049
10.1016/j.asoc.2015.06.011
10.1109/TSMCB.2002.804367
10.1016/j.cor.2009.03.004
10.1504/IJBIC.2010.037022
10.1016/j.asoc.2013.05.022
10.1016/j.eswa.2015.10.012
10.1016/j.knosys.2015.07.032
10.12785/amis/070248
10.1016/j.ejor.2017.02.017
10.12785/amis/070147
10.1016/j.cam.2010.12.027
10.1287/opre.6.6.791
10.1016/j.tcs.2013.11.028
10.1016/j.tre.2016.01.010
10.1016/j.eswa.2014.07.054
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.04.057
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 114
ExternalDocumentID 10_1016_j_asoc_2017_04_057
S1568494617302399
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c215t-c24aa646f7bcf1771ddca1c43e2ddd80cc3de655fd09dbd9fda6751686670fc03
ISSN 1568-4946
IngestDate Tue Nov 18 22:03:43 EST 2025
Sat Nov 29 07:06:31 EST 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Travelling salesman problem
Approximate algorithm
Spherical TSP
Complete 2-opt algorithm
Glowworm swarm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c215t-c24aa646f7bcf1771ddca1c43e2ddd80cc3de655fd09dbd9fda6751686670fc03
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_asoc_2017_04_057
crossref_citationtrail_10_1016_j_asoc_2017_04_057
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_04_057
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Goyal (bib0005) 2010; 11
Cui, Feng, Guo (bib0165) 2015; 88
Weyland (bib0115) 2014; 540
Zhou, Huang (bib0180) 2012; 27
Wang, Zhang, Créput (bib0085) 2017; 15
Jung, Moon (bib0040) 2002; 6
Xia, Zhu, Gu (bib0020) 2016; 374
Croes (bib0190) 1958; 6
Bianchi, Knowles, Bowler (bib0185) 2005; 162
Kinable, Smeulders, Delcour (bib0015) 2017; 261
Bonyadi, Hosseini (bib0060) 2010; 2
Ray, De (bib0155) 2016; 62
Li, Cheng, Tan (bib0070) 2012
Uğur (bib0135) 2008; 178
Jayakumar, Venkatesh (bib0175) 2014; 23
Cheng, Liang (bib0160) 2013; 30
Avşar (bib0080) 2015; 34
Zhou, Zhou, Zhang (bib0170) 2013; 7
Roberti, Wen (bib0110) 2016; 89
Jin, Leung, Wong (bib0045) 2003; 33
Dorigo, Stützle (bib0055) 1999
Gharehchopogh, Farhad (bib0100) 2012; 53
Krishnanand, Ghose (bib0145) 2009; 1
Escario, Jimenez, Giron-Sierra (bib0065) 2015; 42
Ouyang, Zhou, Luo (bib0140) 2013; 7
Ahmed (bib0035) 2010; 3
Marinakis, Marinaki (bib0120) 2010; 37
Englert, Röglin, Vöcking (bib0195) 2016; 13
Pang, Wang, Zhou (bib0075) 2004
Uğur, Korukoğlu, Çalıskan (bib0105) 2009; 14
Goldberg (bib0025) 1989
Mavrovouniotis, Yang (bib0125) 2013; 13
Mahi, Ömer Kaan Baykan Kodaz (bib0095) 2015; 30
Paul, Moganarangan, Kumar (bib0050) 2015; 32
Larrañaga, Kuijpers, Murga (bib0010) 1999; 13
Ezugwu, Adewumi, Frîncu (bib0090) 2017; 77
Majumdar, Bhunia (bib0130) 2011; 235
Wang, Ersoy, He (bib0030) 2016; 43
Marinaki, Marinakis (bib0150) 2016; 46
Mahi (10.1016/j.asoc.2017.04.057_bib0095) 2015; 30
Jin (10.1016/j.asoc.2017.04.057_bib0045) 2003; 33
Zhou (10.1016/j.asoc.2017.04.057_bib0170) 2013; 7
Wang (10.1016/j.asoc.2017.04.057_bib0085) 2017; 15
Krishnanand (10.1016/j.asoc.2017.04.057_bib0145) 2009; 1
Pang (10.1016/j.asoc.2017.04.057_bib0075) 2004
Ahmed (10.1016/j.asoc.2017.04.057_bib0035) 2010; 3
Englert (10.1016/j.asoc.2017.04.057_bib0195) 2016; 13
Cheng (10.1016/j.asoc.2017.04.057_bib0160) 2013; 30
Weyland (10.1016/j.asoc.2017.04.057_bib0115) 2014; 540
Goyal (10.1016/j.asoc.2017.04.057_bib0005) 2010; 11
Avşar (10.1016/j.asoc.2017.04.057_bib0080) 2015; 34
Uğur (10.1016/j.asoc.2017.04.057_bib0135) 2008; 178
Li (10.1016/j.asoc.2017.04.057_bib0070) 2012
Dorigo (10.1016/j.asoc.2017.04.057_bib0055) 1999
Majumdar (10.1016/j.asoc.2017.04.057_bib0130) 2011; 235
Wang (10.1016/j.asoc.2017.04.057_bib0030) 2016; 43
Paul (10.1016/j.asoc.2017.04.057_bib0050) 2015; 32
Croes (10.1016/j.asoc.2017.04.057_bib0190) 1958; 6
Goldberg (10.1016/j.asoc.2017.04.057_bib0025) 1989
Jayakumar (10.1016/j.asoc.2017.04.057_bib0175) 2014; 23
Kinable (10.1016/j.asoc.2017.04.057_bib0015) 2017; 261
Uğur (10.1016/j.asoc.2017.04.057_bib0105) 2009; 14
Cui (10.1016/j.asoc.2017.04.057_bib0165) 2015; 88
Larrañaga (10.1016/j.asoc.2017.04.057_bib0010) 1999; 13
Escario (10.1016/j.asoc.2017.04.057_bib0065) 2015; 42
Mavrovouniotis (10.1016/j.asoc.2017.04.057_bib0125) 2013; 13
Ezugwu (10.1016/j.asoc.2017.04.057_bib0090) 2017; 77
Ouyang (10.1016/j.asoc.2017.04.057_bib0140) 2013; 7
Bianchi (10.1016/j.asoc.2017.04.057_bib0185) 2005; 162
Xia (10.1016/j.asoc.2017.04.057_bib0020) 2016; 374
Jung (10.1016/j.asoc.2017.04.057_bib0040) 2002; 6
Ray (10.1016/j.asoc.2017.04.057_bib0155) 2016; 62
Gharehchopogh (10.1016/j.asoc.2017.04.057_bib0100) 2012; 53
Zhou (10.1016/j.asoc.2017.04.057_bib0180) 2012; 27
Marinaki (10.1016/j.asoc.2017.04.057_bib0150) 2016; 46
Bonyadi (10.1016/j.asoc.2017.04.057_bib0060) 2010; 2
Roberti (10.1016/j.asoc.2017.04.057_bib0110) 2016; 89
Marinakis (10.1016/j.asoc.2017.04.057_bib0120) 2010; 37
References_xml – volume: 30
  start-page: 484
  year: 2015
  end-page: 490
  ident: bib0095
  article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 862
  year: 2015
  end-page: 873
  ident: bib0080
  article-title: Danial Esmaeili Aliabadi Parallelized neural network system for solving Euclidean traveling salesman problem
  publication-title: Appl. Soft Comput.
– volume: 32
  start-page: 383
  year: 2015
  end-page: 402
  ident: bib0050
  article-title: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: an empirical study based on traveling salesman problems
  publication-title: Appl. Soft Comput.
– start-page: 1583
  year: 2004
  end-page: 1585
  ident: bib0075
  article-title: Fuzzy discrete particle swarm optimization for solving traveling salesman problem: international Conference on Computer and Information Technology
  publication-title: IEEE
– volume: 14
  start-page: 219
  year: 2009
  end-page: 228
  ident: bib0105
  article-title: Genetic algorithm based solution for TSP on a sphere
  publication-title: Math. Comput. Appl.
– volume: 13
  start-page: 129
  year: 1999
  end-page: 170
  ident: bib0010
  article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators
  publication-title: Artif. Intell. Rev.
– start-page: 11
  year: 1999
  end-page: 32
  ident: bib0055
  article-title: The ant colony optimization metaheuristic
  publication-title: New Ideas in Optimization
– start-page: 566
  year: 2012
  end-page: 573
  ident: bib0070
  article-title: A Discrete Artificial Bee Colony Algorithm for TSP Problem Bio-Inspired Computing and Applications
– volume: 15
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib0085
  article-title: A massively parallel neural network approach to large-scale Euclidean traveling salesman problems
  publication-title: Neurocomputing
– volume: 235
  start-page: 3063
  year: 2011
  end-page: 3078
  ident: bib0130
  article-title: Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times
  publication-title: J. Comput. App. Math.
– year: 1989
  ident: bib0025
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– volume: 178
  start-page: 3275
  year: 2008
  end-page: 3287
  ident: bib0135
  article-title: Path planning on a cuboid using genetic algorithms
  publication-title: Inf. Sci.
– volume: 3
  start-page: 96
  year: 2010
  end-page: 105
  ident: bib0035
  article-title: Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator
  publication-title: Int. J. Biom. Bioinf.
– volume: 13
  start-page: 4023
  year: 2013
  end-page: 4037
  ident: bib0125
  article-title: Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 877
  year: 2003
  end-page: 888
  ident: bib0045
  article-title: An efficient self-organizing map designed by genetic algorithms for the traveling salesman problem
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
– volume: 7
  start-page: 379
  year: 2013
  end-page: 388
  ident: bib0170
  article-title: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems
  publication-title: Appl. Math. Inf. Sci.
– volume: 53
  start-page: 39
  year: 2012
  end-page: 44
  ident: bib0100
  article-title: New approach for solving dynamic traveling salesman problem with hybrid genetic algorithms and ant colony optimization
  publication-title: Int. J. Comput. Appl.
– volume: 162
  start-page: 206
  year: 2005
  end-page: 219
  ident: bib0185
  article-title: Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms
  publication-title: Eur. J. Oper. Res.
– volume: 540
  start-page: 156
  year: 2014
  end-page: 168
  ident: bib0115
  article-title: On the computational complexity of the probabilistic traveling salesman problem with deadlines
  publication-title: Theor. Comput. Sci.
– volume: 30
  start-page: 996
  year: 2013
  end-page: 998
  ident: bib0160
  article-title: Artificial glowworm swarm optimization algorithm for 0–1 knapsack problem
  publication-title: Appl.Res.Comput.
– volume: 13
  start-page: 10
  year: 2016
  ident: bib0195
  article-title: Smoothed analysis of the 2-Opt algorithm for the general TSP
  publication-title: ACM Trans. Algorithms
– volume: 261
  start-page: 475
  year: 2017
  end-page: 485
  ident: bib0015
  article-title: Exact algorithms for the equitable traveling salesman problem
  publication-title: Eur. J. Oper. Res.
– volume: 374
  start-page: 164
  year: 2016
  end-page: 178
  ident: bib0020
  article-title: Toward solving the Steiner travelling salesman problem on urban road maps using the branch decomposition of graphs
  publication-title: Inf. Sci.
– volume: 6
  start-page: 791
  year: 1958
  end-page: 812
  ident: bib0190
  article-title: A method for solving traveling salesman problems
  publication-title: Oper. Res.
– volume: 6
  start-page: 557
  year: 2002
  end-page: 565
  ident: bib0040
  article-title: Toward minimal restriction of genetic encoding and crossovers for the two-dimensional Euclidean TSP
  publication-title: Evol. Comput. IEEE Trans.
– volume: 42
  start-page: 390
  year: 2015
  end-page: 410
  ident: bib0065
  article-title: Ant colony extended: experiments on the travelling salesman problem
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 777
  year: 2013
  end-page: 784
  ident: bib0140
  article-title: A novel discrete cuckoo search algorithm for spherical traveling salesman problem
  publication-title: Appl. Math. Inf. Sci.
– volume: 77
  start-page: 189
  year: 2017
  end-page: 210
  ident: bib0090
  article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 375
  year: 2014
  end-page: 386
  ident: bib0175
  article-title: Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem
  publication-title: Appl. Soft Comput.
– volume: 62
  start-page: 117
  year: 2016
  end-page: 136
  ident: bib0155
  article-title: An energy efficient sensor movement approach using multi-parameter reverse glowworm swarm optimization algorithm in mobile wireless sensor network
  publication-title: Simul. Modell. Pract. Theory
– volume: 88
  start-page: 195
  year: 2015
  end-page: 209
  ident: bib0165
  article-title: A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction
  publication-title: Knowl.-Based Syst.
– volume: 27
  start-page: 1816
  year: 2012
  end-page: 1821
  ident: bib0180
  article-title: Artificial glowworm swarm optimization algorithm for TSP
  publication-title: Control Decis.
– volume: 89
  start-page: 32
  year: 2016
  end-page: 52
  ident: bib0110
  article-title: The electric traveling salesman problem with time windows
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
– volume: 1
  start-page: 93
  year: 2009
  end-page: 119
  ident: bib0145
  article-title: Glowworm swarm optimization: a new method for optimizing multi-modal functions
  publication-title: Int. J. Comput. Intell. Stud.
– volume: 11
  start-page: 799
  year: 2010
  end-page: 803
  ident: bib0005
  article-title: A survey on travelling salesman problem
  publication-title: Midwest Instruction Comput. Symp.
– volume: 2
  start-page: 422
  year: 2010
  end-page: 433
  ident: bib0060
  article-title: A dynamic max-min ant system for solving the travelling salesman problem
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 43
  start-page: 415
  year: 2016
  end-page: 423
  ident: bib0030
  article-title: Multi-offspring genetic algorithm and its application to the traveling salesman problem
  publication-title: Appl. Soft Comput.
– volume: 37
  start-page: 432
  year: 2010
  end-page: 442
  ident: bib0120
  article-title: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem
  publication-title: Comput. Oper. Res.
– volume: 46
  start-page: 145
  year: 2016
  end-page: 163
  ident: bib0150
  article-title: A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands
  publication-title: Expert Syst. Appl.
– volume: 62
  start-page: 117
  year: 2016
  ident: 10.1016/j.asoc.2017.04.057_bib0155
  article-title: An energy efficient sensor movement approach using multi-parameter reverse glowworm swarm optimization algorithm in mobile wireless sensor network
  publication-title: Simul. Modell. Pract. Theory
  doi: 10.1016/j.simpat.2016.01.007
– volume: 30
  start-page: 484
  issue: C
  year: 2015
  ident: 10.1016/j.asoc.2017.04.057_bib0095
  article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.068
– year: 1989
  ident: 10.1016/j.asoc.2017.04.057_bib0025
– volume: 6
  start-page: 557
  issue: 6
  year: 2002
  ident: 10.1016/j.asoc.2017.04.057_bib0040
  article-title: Toward minimal restriction of genetic encoding and crossovers for the two-dimensional Euclidean TSP
  publication-title: Evol. Comput. IEEE Trans.
  doi: 10.1109/TEVC.2002.804321
– volume: 30
  start-page: 996
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2017.04.057_bib0160
  article-title: Artificial glowworm swarm optimization algorithm for 0–1 knapsack problem
  publication-title: Appl.Res.Comput.
– volume: 32
  start-page: 383
  year: 2015
  ident: 10.1016/j.asoc.2017.04.057_bib0050
  article-title: Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: an empirical study based on traveling salesman problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.038
– volume: 53
  start-page: 39
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2017.04.057_bib0100
  article-title: New approach for solving dynamic traveling salesman problem with hybrid genetic algorithms and ant colony optimization
  publication-title: Int. J. Comput. Appl.
– volume: 13
  start-page: 129
  issue: 2
  year: 1999
  ident: 10.1016/j.asoc.2017.04.057_bib0010
  article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006529012972
– volume: 162
  start-page: 206
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2017.04.057_bib0185
  article-title: Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2003.10.016
– start-page: 11
  year: 1999
  ident: 10.1016/j.asoc.2017.04.057_bib0055
  article-title: The ant colony optimization metaheuristic
– volume: 27
  start-page: 1816
  issue: 7
  year: 2012
  ident: 10.1016/j.asoc.2017.04.057_bib0180
  article-title: Artificial glowworm swarm optimization algorithm for TSP
  publication-title: Control Decis.
– volume: 43
  start-page: 415
  year: 2016
  ident: 10.1016/j.asoc.2017.04.057_bib0030
  article-title: Multi-offspring genetic algorithm and its application to the traveling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.021
– volume: 13
  start-page: 10
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.04.057_bib0195
  article-title: Smoothed analysis of the 2-Opt algorithm for the general TSP
  publication-title: ACM Trans. Algorithms
– start-page: 1583
  year: 2004
  ident: 10.1016/j.asoc.2017.04.057_bib0075
  article-title: Fuzzy discrete particle swarm optimization for solving traveling salesman problem: international Conference on Computer and Information Technology
  publication-title: IEEE
– volume: 178
  start-page: 3275
  issue: 16
  year: 2008
  ident: 10.1016/j.asoc.2017.04.057_bib0135
  article-title: Path planning on a cuboid using genetic algorithms
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.04.005
– volume: 374
  start-page: 164
  year: 2016
  ident: 10.1016/j.asoc.2017.04.057_bib0020
  article-title: Toward solving the Steiner travelling salesman problem on urban road maps using the branch decomposition of graphs
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.09.043
– volume: 77
  start-page: 189
  year: 2017
  ident: 10.1016/j.asoc.2017.04.057_bib0090
  article-title: Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.053
– volume: 15
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.asoc.2017.04.057_bib0085
  article-title: A massively parallel neural network approach to large-scale Euclidean traveling salesman problems
  publication-title: Neurocomputing
– volume: 23
  start-page: 375
  year: 2014
  ident: 10.1016/j.asoc.2017.04.057_bib0175
  article-title: Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.049
– volume: 11
  start-page: 799
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2017.04.057_bib0005
  article-title: A survey on travelling salesman problem
  publication-title: Midwest Instruction Comput. Symp.
– volume: 34
  start-page: 862
  issue: C
  year: 2015
  ident: 10.1016/j.asoc.2017.04.057_bib0080
  article-title: Danial Esmaeili Aliabadi Parallelized neural network system for solving Euclidean traveling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.011
– volume: 33
  start-page: 877
  issue: 6
  year: 2003
  ident: 10.1016/j.asoc.2017.04.057_bib0045
  article-title: An efficient self-organizing map designed by genetic algorithms for the traveling salesman problem
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2002.804367
– volume: 37
  start-page: 432
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2017.04.057_bib0120
  article-title: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.03.004
– volume: 1
  start-page: 93
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2017.04.057_bib0145
  article-title: Glowworm swarm optimization: a new method for optimizing multi-modal functions
  publication-title: Int. J. Comput. Intell. Stud.
– volume: 2
  start-page: 422
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2017.04.057_bib0060
  article-title: A dynamic max-min ant system for solving the travelling salesman problem
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2010.037022
– start-page: 566
  year: 2012
  ident: 10.1016/j.asoc.2017.04.057_bib0070
– volume: 13
  start-page: 4023
  issue: 10
  year: 2013
  ident: 10.1016/j.asoc.2017.04.057_bib0125
  article-title: Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.05.022
– volume: 46
  start-page: 145
  year: 2016
  ident: 10.1016/j.asoc.2017.04.057_bib0150
  article-title: A glowworm swarm optimization algorithm for the vehicle routing problem with stochastic demands
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.012
– volume: 88
  start-page: 195
  year: 2015
  ident: 10.1016/j.asoc.2017.04.057_bib0165
  article-title: A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.032
– volume: 7
  start-page: 777
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2017.04.057_bib0140
  article-title: A novel discrete cuckoo search algorithm for spherical traveling salesman problem
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/070248
– volume: 261
  start-page: 475
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2017.04.057_bib0015
  article-title: Exact algorithms for the equitable traveling salesman problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.02.017
– volume: 7
  start-page: 379
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2017.04.057_bib0170
  article-title: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.12785/amis/070147
– volume: 235
  start-page: 3063
  issue: 9
  year: 2011
  ident: 10.1016/j.asoc.2017.04.057_bib0130
  article-title: Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times
  publication-title: J. Comput. App. Math.
  doi: 10.1016/j.cam.2010.12.027
– volume: 3
  start-page: 96
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2017.04.057_bib0035
  article-title: Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator
  publication-title: Int. J. Biom. Bioinf.
– volume: 6
  start-page: 791
  issue: 6
  year: 1958
  ident: 10.1016/j.asoc.2017.04.057_bib0190
  article-title: A method for solving traveling salesman problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.6.6.791
– volume: 14
  start-page: 219
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2017.04.057_bib0105
  article-title: Genetic algorithm based solution for TSP on a sphere
  publication-title: Math. Comput. Appl.
– volume: 540
  start-page: 156
  year: 2014
  ident: 10.1016/j.asoc.2017.04.057_bib0115
  article-title: On the computational complexity of the probabilistic traveling salesman problem with deadlines
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2013.11.028
– volume: 89
  start-page: 32
  year: 2016
  ident: 10.1016/j.asoc.2017.04.057_bib0110
  article-title: The electric traveling salesman problem with time windows
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2016.01.010
– volume: 42
  start-page: 390
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2017.04.057_bib0065
  article-title: Ant colony extended: experiments on the travelling salesman problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.07.054
SSID ssj0016928
Score 2.4605067
Snippet •The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial optimization problems.•This paper we extend the two-dimensional TSP to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Approximate algorithm
Complete 2-opt algorithm
Glowworm swarm optimization
Spherical TSP
Travelling salesman problem
Title A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems
URI https://dx.doi.org/10.1016/j.asoc.2017.04.057
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0h64RUa2Y3vXxwgVAaoqkAKKuFhr726SKrVDbTflxk_hpzL7jClQ0QOXVWTH4yTz5ZvZ8TwQesljEcaS50FMCIcNSs6DMiMiiMsk5DIHF1lX8X8-IsfHdD7PP4xGP1wtzPma1DW9uMg3_1XVcAyUrUpnr6FuLxQOwGtQOqygdlj_SfHT8fKbKsMas_Wiga3_8lTljZd6EITq_7Hdgps6brcM1gYI49RWYroKtw1oUozjAM4NRKhsxFa1INBK7dTQItPNuwUL06oHAXY0TTt0d52P2wLZa9l950ylTikwnDdfeYR-WTa9tgpNvfja75A7s2FtOF8vlr23JUe9DvV-XElm5doIBlhFl6LlSTejQZLbUKRlZdPQ3dKqHVFsLXRkyk5_I38Thzh5xQDXKmmP6Ca2pv_1r522L1lAn5foUt5OCiWjUDKKMClAxg20H5M0B97cn747nL_3T6qyXM_v9d_BFmaZHMLLn-TPzs_AoZndRbftTgRPDYLuoZGo76M7bsoHtqT_AH2fYgMo7NGAPaCwAxTWgMJDQGEAFHaAwhpQAxEAKOwBhXeAwg5Q2AHqIfr05nD2-m1g53YEFTiQHawJY1mSSVJWMiIk4rxiUZVMRMw5p2FVTbjI0lRyoIaS55Iz2LZGGc0yEsoqnDxCe3VTi8cI04jJlEpJBQGBsJkJY0ETlpdhScF4JAcocj9oUdmm9mq2yrr4uyoP0NhfszEtXa58d-r0VFin1DibBcDuiuueXOsuT9Gt3T_jGdrrznrxHN2szrtVe_bCYu4nsbO2Cw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+algorithm+combining+glowworm+swarm+optimization+and+complete+2-opt+algorithm+for+spherical+travelling+salesman+problems&rft.jtitle=Applied+soft+computing&rft.au=Chen%2C+Xin&rft.au=Zhou%2C+Yongquan&rft.au=Tang%2C+Zhonghua&rft.au=Luo%2C+Qifang&rft.date=2017-09-01&rft.issn=1568-4946&rft.volume=58&rft.spage=104&rft.epage=114&rft_id=info:doi/10.1016%2Fj.asoc.2017.04.057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_04_057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon