Spectral embedded generalized mean based k-nearest neighbors clustering with S-distance
The spectral clustering algorithm is extensively employed in different aspects, especially in the field of pattern recognition. However, the efficient construction of the neighborhood graph is the main reason for its promising results. Generally, the similarity matrix relies on the applied similarit...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 169; S. 114326 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2021
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The spectral clustering algorithm is extensively employed in different aspects, especially in the field of pattern recognition. However, the efficient construction of the neighborhood graph is the main reason for its promising results. Generally, the similarity matrix relies on the applied similarity measure between two data points, selection of k−nearest neighbors (KNN), and approach for the construction of a neighborhood graph. In this study, we integrate S-distance to spectral clustering, which is capable to find out the complex and non-linear cluster structures. Moreover, generalized mean distance-based KNN is proposed to decrease the sensitiveness towards the value of the k. Also, a symmetry-favored KNN method is applied to construct the neighborhood graph, which reduces the impact of outliers and noisy data points. However, spectral clustering faces scalability and speedup issues in the case of large size datasets. Thus, the proposed spectral clustering algorithm is also executed in distributed environments. Several experiments are performed to validate the proposed clustering algorithm on 20 real-world datasets and 3 large size datasets. Experimental results demonstrate that the proposed clustering algorithm outperforms some of the baseline methods in terms of accuracy and clustering error rates. Finally, we conduct Wilcoxon’s Rank-Sum test and illustrate that the proposed spectral clustering algorithm is statistically significant.
•A churn prediction model is proposed using an enhanced spectral clustering (SC).•A non-linear distance measure called S-distance is merged with the conventional SC.•The proposed clustering algorithm is validated on 15 datasets.•Three state-of-the-art methods are considered to compare with the proposed one. |
|---|---|
| AbstractList | The spectral clustering algorithm is extensively employed in different aspects, especially in the field of pattern recognition. However, the efficient construction of the neighborhood graph is the main reason for its promising results. Generally, the similarity matrix relies on the applied similarity measure between two data points, selection of k−nearest neighbors (KNN), and approach for the construction of a neighborhood graph. In this study, we integrate S-distance to spectral clustering, which is capable to find out the complex and non-linear cluster structures. Moreover, generalized mean distance-based KNN is proposed to decrease the sensitiveness towards the value of the k. Also, a symmetry-favored KNN method is applied to construct the neighborhood graph, which reduces the impact of outliers and noisy data points. However, spectral clustering faces scalability and speedup issues in the case of large size datasets. Thus, the proposed spectral clustering algorithm is also executed in distributed environments. Several experiments are performed to validate the proposed clustering algorithm on 20 real-world datasets and 3 large size datasets. Experimental results demonstrate that the proposed clustering algorithm outperforms some of the baseline methods in terms of accuracy and clustering error rates. Finally, we conduct Wilcoxon’s Rank-Sum test and illustrate that the proposed spectral clustering algorithm is statistically significant.
•A churn prediction model is proposed using an enhanced spectral clustering (SC).•A non-linear distance measure called S-distance is merged with the conventional SC.•The proposed clustering algorithm is validated on 15 datasets.•Three state-of-the-art methods are considered to compare with the proposed one. |
| ArticleNumber | 114326 |
| Author | Seal, Ayan Sharma, Krishna Kumar |
| Author_xml | – sequence: 1 givenname: Krishna Kumar surname: Sharma fullname: Sharma, Krishna Kumar email: krisshna.sharma@gmail.com organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology Design & Manufacturing Jabalpur, Jabalpur, Madhya pradesh 482005, India – sequence: 2 givenname: Ayan surname: Seal fullname: Seal, Ayan email: ayan@iiitdmj.ac.in organization: Department of Computer Science and Engineering, PDPM Indian Institute of Information Technology Design & Manufacturing Jabalpur, Jabalpur, Madhya pradesh 482005, India |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKu8QGqSuWQG3EjxBgUXVVyGXE7b1GmmJNGiT2-GunLR1Tn8nO_A_03QyPceELpmdMYoq2-2M4gHNeOU54CVBa_P0Jg1oiC1aIsRGtO2EqRkorxAkxi3lDJBqRij9-UeTAqqw7DTYC1YvAYPOXA_ed-B8lirmNcP4kEFiAl7cOuN7kPEpvuMCYLza3xwaYOXxLqYlDdwic5Xqotw9Ten6O3h_nX-RBYvj8_zuwUxnFWJtIXiUNO2hQJWFRjRVLYBpZW2jW6oZlznA63qgqkq54a3WtSibGxZAQcopqg5_jWhjzHAShqXVHK9z6VcJxmVgyC5lYMgOQiSR0EZ5f_QfXA7Fb5PQ7dHCHKpLwdBRuMgF7YuZJHS9u4U_guZLoPM |
| CitedBy_id | crossref_primary_10_1145_3725418 crossref_primary_10_3390_fractalfract7080588 crossref_primary_10_1016_j_procs_2023_01_135 crossref_primary_10_3390_sym13040596 crossref_primary_10_1145_3522592 crossref_primary_10_1109_ACCESS_2021_3083969 crossref_primary_10_1007_s10044_022_01094_z crossref_primary_10_1007_s00521_020_05676_y crossref_primary_10_1002_mma_7450 crossref_primary_10_1007_s00521_021_06639_7 crossref_primary_10_1109_ACCESS_2021_3130066 crossref_primary_10_1109_ACCESS_2022_3216705 crossref_primary_10_1016_j_sigpro_2021_108161 crossref_primary_10_1016_j_ins_2022_07_101 crossref_primary_10_1016_j_neucom_2022_04_030 crossref_primary_10_1007_s10044_022_01127_7 crossref_primary_10_1109_ACCESS_2023_3298693 crossref_primary_10_1155_2021_4072499 crossref_primary_10_1007_s00521_021_06166_5 crossref_primary_10_1109_JSEN_2024_3418413 crossref_primary_10_1016_j_ins_2023_119113 crossref_primary_10_1038_s41598_025_00897_4 crossref_primary_10_1109_TCSS_2022_3159829 crossref_primary_10_1177_20552076221109530 crossref_primary_10_1155_2022_8951961 crossref_primary_10_1371_journal_pone_0270327 crossref_primary_10_1109_TKDE_2024_3483572 crossref_primary_10_1155_2021_1382559 crossref_primary_10_1016_j_engappai_2023_107274 crossref_primary_10_1109_TIA_2022_3206731 crossref_primary_10_3390_computers10090112 crossref_primary_10_1016_j_neucom_2024_129187 crossref_primary_10_1016_j_eswa_2025_127049 crossref_primary_10_1007_s00521_021_06599_y |
| Cites_doi | 10.1090/proc/12953 10.1109/34.868688 10.1109/ACCESS.2019.2910195 10.1016/j.knosys.2018.12.007 10.1016/j.eswa.2016.09.031 10.1109/TPAMI.2012.237 10.1016/j.neucom.2011.09.002 10.1016/j.patrec.2005.12.016 10.1137/140978168 10.1109/TPAMI.2004.1262185 10.1016/j.patrec.2017.09.025 10.1145/567806.567807 10.1016/j.engappai.2020.103928 10.1109/TSMC.1976.5408784 10.1007/s11222-007-9033-z 10.1016/j.patcog.2012.05.007 10.1016/j.engappai.2018.03.023 10.1162/NECO_a_00547 10.1016/j.asoc.2019.106016 10.1109/TNNLS.2018.2861209 10.1109/TIT.2015.2448072 10.1109/TFUZZ.2004.840134 10.1016/j.ins.2020.08.080 10.1109/TII.2012.2188804 10.1145/1824777.1824779 10.1016/j.eswa.2008.10.041 10.1111/insr.12095_3 10.1109/TVCG.2008.135 10.1109/TPAMI.1984.4767478 10.1109/TPAMI.2002.1114856 10.1109/TSP.2012.2218241 10.1016/j.patrec.2016.04.013 10.1016/j.dss.2014.03.001 10.1016/j.knosys.2019.01.026 10.1016/j.knosys.2014.07.020 10.1016/j.patcog.2018.10.004 10.1016/j.patrec.2005.10.010 10.1016/j.eswa.2011.02.086 10.1016/j.eswa.2019.06.050 10.1049/iet-ipr.2011.0181 10.1109/TPAMI.2010.88 10.1109/43.159993 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2020.114326 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_114326 S0957417420310186 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c215t-93a2e6099e3ef5ec785d8eababd8b80b12ba2eba631a5eabc29b76748d45e2ee3 |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 21:00:47 EST 2025 Sat Nov 29 07:07:26 EST 2025 Fri Feb 23 02:49:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spectral clustering Symmetry favored k-nearest neighbors Distributed computing Generalized mean S-distance |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c215t-93a2e6099e3ef5ec785d8eababd8b80b12ba2eba631a5eabc29b76748d45e2ee3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2020_114326 crossref_primary_10_1016_j_eswa_2020_114326 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114326 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 2021-05-00 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hagen, Kahng (b19) 1992; 11 547, 723–745. Wu, Simon (b60) 1999 Sra, Hosseini (b51) 2015; 25 Sakar, C. O., Polat, S. O., Katircioglu, M., & Kastro, Y. (0000). Real-time prediction of online shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Sharma, Seal (b46) 2020; 96 Wang, Qin, Nie, Li (b57) 2018; 30 Li, Ding (b27) 2006 Chakraborty, Das (b5) 2017; 100 Notsu, Komori, Eguchi (b37) 2014; 26 Mitani, Hamamoto (b33) 2006; 27 Karlekar, Seal, Krejcar, Gonzalo-Martin (b24) 2019; 7 Moro, Cortez, Rita (b35) 2014; 62 Kalyani, Swarup (b23) 2011; 38 1–16. Seal, Karlekar, Krejcar, Gonzalo-Martin (b42) 2020; 88 Bridson, Haefliger (b4) 1999 (pp. 691–701). Sra (b50) 2016; 144 (vol. 2003). Sharma, K. K., & Seal, A. (0000). Multi-view spectral clustering for uncertain objects. Dudani (b14) 1976 Moore, A., Hall, J., Kreibich, C., Harris, E., & Pratt, I. (2003). Architecture of a network monitor. In Pan, Wang, Ku (b38) 2017; 67 Lewis, Yang, Rose, Li (b26) 2004; 5 Chen, Feng (b7) 2012; 77 Thakur, Gropp (b55) 2003 Zeng, Yang, Zhao (b62) 2009; 36 Tao, Wang, Chang, Li, Liu, Zou (b53) 2019; 170 Dheeru, Karra Taniskidou (b12) 2017 Nock, Nielsen, Amari (b36) 2016; 62 Jiao, Shang, Wang, Liu (b22) 2012; 45 Marques (b30) 1995 Liu, Liu, Zhang, Sun (b28) 2016; 2016 Shi, Malik (b48) 2000; 22 Sharma, Seal (b45) 2019 Wu, Simon (b59) 1997 Richardson (b39) 2015; 83 Snir, Gropp, Otto, Huss-Lederman, Dongarra, Walker (b49) 1998 Fawcett (b15) 2006; 27 Maschho, K. J., & Sorensen, D. (1996). A portable implementation of ARPACK for distributed memory parallel architectures. In Cui, Zhou, Qu, Wong, Li (b10) 2008; 14 Selim, Ismail (b43) 1984 Blackford, Petitet, Pozo, Remington, Whaley, Demmel, Dongarra, Duff, Hammarling, Henry (b3) 2002; 28 Zou, Lin, Jiang, Liu, Zeng (b63) 2020; 21 Chakraborty, S., Paul, D., Das, S., & Xu, J. (2020). Entropy weighted power k-means clustering. In Jaferzadeh, Kiani, Mozaffari (b21) 2012; 6 Gou, Zhan, Rao, Shen, Wang, He (b17) 2014; 70 Liu, Zhang (b29) 2004 Duan, Da Xu (b13) 2012; 8 Ackermann, Blömer, Sohler (b1) 2010; 6 Tensmeyer, Martinez (b54) 2019; 87 Von Luxburg (b56) 2007; 17 Fowlkes, Belongie, Chung, Malik (b16) 2004; 26 Chu, Kim, Lin, Yu, Bradski, Olukotun, Ng (b9) 2007 Horng, Chen, Chang, Lee (b20) 2005; 13 (vol. 1). Wiesel (b58) 2012; 60 Yan, Wang, Wang, Wu, Wang (b61) 2019 Almalawi, Tari, Khalil, Fahad (b2) 2013 Gursoy (b18) 2003 Saha, Das (b40) 2016; 79 Kim, Lee, Lee (b25) 2013; 35 Maulik, Bandyopadhyay (b32) 2002; 24 Tao, Wang, Chang, Li (b52) 2019; 166 Sharma, Seal (b47) 2020 Chen, Song, Bai, Lin, Chang (b8) 2010; 33 De Stefano, Maniaci, Fontanella, di Freca (b11) 2018; 72 Gursoy (10.1016/j.eswa.2020.114326_b18) 2003 Jaferzadeh (10.1016/j.eswa.2020.114326_b21) 2012; 6 Tao (10.1016/j.eswa.2020.114326_b52) 2019; 166 Pan (10.1016/j.eswa.2020.114326_b38) 2017; 67 Zou (10.1016/j.eswa.2020.114326_b63) 2020; 21 Jiao (10.1016/j.eswa.2020.114326_b22) 2012; 45 Hagen (10.1016/j.eswa.2020.114326_b19) 1992; 11 10.1016/j.eswa.2020.114326_b6 Sharma (10.1016/j.eswa.2020.114326_b47) 2020 Li (10.1016/j.eswa.2020.114326_b27) 2006 Wu (10.1016/j.eswa.2020.114326_b59) 1997 Kalyani (10.1016/j.eswa.2020.114326_b23) 2011; 38 Tensmeyer (10.1016/j.eswa.2020.114326_b54) 2019; 87 Chen (10.1016/j.eswa.2020.114326_b8) 2010; 33 Karlekar (10.1016/j.eswa.2020.114326_b24) 2019; 7 Von Luxburg (10.1016/j.eswa.2020.114326_b56) 2007; 17 Sra (10.1016/j.eswa.2020.114326_b50) 2016; 144 Chen (10.1016/j.eswa.2020.114326_b7) 2012; 77 Snir (10.1016/j.eswa.2020.114326_b49) 1998 Thakur (10.1016/j.eswa.2020.114326_b55) 2003 Notsu (10.1016/j.eswa.2020.114326_b37) 2014; 26 Zeng (10.1016/j.eswa.2020.114326_b62) 2009; 36 Liu (10.1016/j.eswa.2020.114326_b28) 2016; 2016 Shi (10.1016/j.eswa.2020.114326_b48) 2000; 22 Almalawi (10.1016/j.eswa.2020.114326_b2) 2013 Blackford (10.1016/j.eswa.2020.114326_b3) 2002; 28 Nock (10.1016/j.eswa.2020.114326_b36) 2016; 62 Gou (10.1016/j.eswa.2020.114326_b17) 2014; 70 Selim (10.1016/j.eswa.2020.114326_b43) 1984 Liu (10.1016/j.eswa.2020.114326_b29) 2004 Cui (10.1016/j.eswa.2020.114326_b10) 2008; 14 Wu (10.1016/j.eswa.2020.114326_b60) 1999 Marques (10.1016/j.eswa.2020.114326_b30) 1995 Tao (10.1016/j.eswa.2020.114326_b53) 2019; 170 Sharma (10.1016/j.eswa.2020.114326_b45) 2019 10.1016/j.eswa.2020.114326_b41 Maulik (10.1016/j.eswa.2020.114326_b32) 2002; 24 Wang (10.1016/j.eswa.2020.114326_b57) 2018; 30 Fowlkes (10.1016/j.eswa.2020.114326_b16) 2004; 26 10.1016/j.eswa.2020.114326_b31 Kim (10.1016/j.eswa.2020.114326_b25) 2013; 35 Yan (10.1016/j.eswa.2020.114326_b61) 2019 Chakraborty (10.1016/j.eswa.2020.114326_b5) 2017; 100 10.1016/j.eswa.2020.114326_b34 Moro (10.1016/j.eswa.2020.114326_b35) 2014; 62 Lewis (10.1016/j.eswa.2020.114326_b26) 2004; 5 Sra (10.1016/j.eswa.2020.114326_b51) 2015; 25 Dudani (10.1016/j.eswa.2020.114326_b14) 1976 Bridson (10.1016/j.eswa.2020.114326_b4) 1999 Dheeru (10.1016/j.eswa.2020.114326_b12) 2017 Sharma (10.1016/j.eswa.2020.114326_b46) 2020; 96 Ackermann (10.1016/j.eswa.2020.114326_b1) 2010; 6 Richardson (10.1016/j.eswa.2020.114326_b39) 2015; 83 Horng (10.1016/j.eswa.2020.114326_b20) 2005; 13 Chu (10.1016/j.eswa.2020.114326_b9) 2007 Saha (10.1016/j.eswa.2020.114326_b40) 2016; 79 Fawcett (10.1016/j.eswa.2020.114326_b15) 2006; 27 10.1016/j.eswa.2020.114326_b44 Wiesel (10.1016/j.eswa.2020.114326_b58) 2012; 60 Duan (10.1016/j.eswa.2020.114326_b13) 2012; 8 Mitani (10.1016/j.eswa.2020.114326_b33) 2006; 27 Seal (10.1016/j.eswa.2020.114326_b42) 2020; 88 De Stefano (10.1016/j.eswa.2020.114326_b11) 2018; 72 |
| References_xml | – volume: 7 start-page: 55121 year: 2019 end-page: 55131 ident: b24 article-title: Fuzzy k-means using non-linear s-distance publication-title: IEEE Access – reference: (vol. 2003). – volume: 62 year: 2016 ident: b36 article-title: On conformal divergences and their population minimizers publication-title: IEEE Transactions on Information Theory – volume: 83 start-page: 163 year: 2015 end-page: 164 ident: b39 article-title: Nonparametric statistics: A step-by-step approach publication-title: International Statistical Review – reference: Maschho, K. J., & Sorensen, D. (1996). A portable implementation of ARPACK for distributed memory parallel architectures. In – volume: 144 start-page: 2787 year: 2016 end-page: 2797 ident: b50 article-title: Positive definite matrices and the S-divergence publication-title: Proceedings of the Americal Mathematical Society – reference: Chakraborty, S., Paul, D., Das, S., & Xu, J. (2020). Entropy weighted power k-means clustering. In – year: 1995 ident: b30 article-title: BLZPACK: Description and user’s guide – volume: 100 start-page: 67 year: 2017 end-page: 73 ident: b5 article-title: K- Means clustering with a new divergence-based distance metric: Convergence and performance analysis publication-title: Pattern Recognition Letters – volume: 70 start-page: 361 year: 2014 end-page: 375 ident: b17 article-title: Improved pseudo nearest neighbor classification publication-title: Knowledge-Based Systems – volume: 88 start-page: 106 year: 2020 end-page: 116 ident: b42 article-title: Fuzzy C-means clustering using Jeffreys-divergence based similarity measure publication-title: Applied Soft Computing – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b15 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters – volume: 5 start-page: 361 year: 2004 end-page: 397 ident: b26 article-title: Rcv1: A new benchmark collection for text categorization research publication-title: Journal of Machine Learning Research – year: 1998 ident: b49 article-title: MPI–The complete reference: The MPI core (vol. 1) – volume: 166 start-page: 42 year: 2019 end-page: 57 ident: b52 article-title: Density-sensitive fuzzy kernel maximum entropy clustering algorithm publication-title: Knowledge-Based Systems – volume: 72 start-page: 99 year: 2018 end-page: 110 ident: b11 article-title: Reliable writer identification in medieval manuscripts through page layout features: The “Avila” Bible case publication-title: Engineering Applications of Artificial Intelligence – volume: 38 start-page: 10839 year: 2011 end-page: 10846 ident: b23 article-title: Particle swarm optimization based K-means clustering approach for security assessment in power systems publication-title: Expert Systems with Applications – volume: 67 start-page: 115 year: 2017 end-page: 125 ident: b38 article-title: A new k-harmonic nearest neighbor classifier based on the multi-local means publication-title: Expert Systems with Applications – volume: 13 start-page: 216 year: 2005 end-page: 228 ident: b20 article-title: A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques publication-title: IEEE Transactions on Fuzzy Systems – reference: Sakar, C. O., Polat, S. O., Katircioglu, M., & Kastro, Y. (0000). Real-time prediction of online shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. – volume: 8 start-page: 679 year: 2012 end-page: 687 ident: b13 article-title: Business intelligence for enterprise systems: a survey publication-title: IEEE Transactions on Industrial Informatics – start-page: 241 year: 2003 end-page: 248 ident: b18 article-title: Data decomposition for parallel k-means clustering publication-title: International conference on parallel processing and applied mathematics – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: b48 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 21 start-page: 1 year: 2020 end-page: 10 ident: b63 article-title: Sequence clustering in bioinformatics: an empirical study publication-title: Briefings in Bioinformatics – year: 1997 ident: b59 article-title: A parallel Lanczos method for symmetric generalized eigenvalue problems – volume: 170 start-page: 26 year: 2019 end-page: 42 ident: b53 article-title: Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies publication-title: Knowledge-Based Systems – start-page: 281 year: 2007 end-page: 288 ident: b9 article-title: Map-reduce for machine learning on multicore publication-title: Advances in neural information processing systems – volume: 6 start-page: 1024 year: 2012 end-page: 1030 ident: b21 article-title: Acceleration of fractal image compression using fuzzy clustering and discrete-cosine-transform-based metric publication-title: IET Image Processing – volume: 87 start-page: 1 year: 2019 end-page: 16 ident: b54 article-title: CONFIRM–Clustering of noisy form images using robust matching publication-title: Pattern Recognition – volume: 79 start-page: 60 year: 2016 end-page: 67 ident: b40 article-title: Geometric divergence based fuzzy clustering with strong resilience to noise features publication-title: Pattern Recognition Letters – volume: 25 start-page: 713 year: 2015 end-page: 739 ident: b51 article-title: Conic geometric optimization on the manifold of positive definite matrices publication-title: SIAM Journal on Optimization – volume: 60 start-page: 6182 year: 2012 end-page: 6189 ident: b58 article-title: Geodesic convexity and covariance estimation publication-title: IEEE Transactions on Signal Processing – start-page: 81 year: 1984 end-page: 87 ident: b43 article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: (pp. 691–701). – volume: 24 start-page: 1650 year: 2002 end-page: 1654 ident: b32 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 33 start-page: 568 year: 2010 end-page: 586 ident: b8 article-title: Parallel spectral clustering in distributed systems publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: (vol. 1). – start-page: 298 year: 2004 end-page: 305 ident: b29 article-title: Segmentation of 3D meshes through spectral clustering publication-title: 12th Pacific conference on computer graphics and applications, 2004 – volume: 26 year: 2014 ident: b37 article-title: Spontaneous clustering via minimum gamma-divergence publication-title: Neural Computation – year: 2019 ident: b61 article-title: Fast communication-efficient spectral clustering over distributed data publication-title: IEEE Transactions on Big Data – volume: 35 start-page: 1690 year: 2013 end-page: 1703 ident: b25 article-title: Learning full pairwise affinities for spectral segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 257 year: 2003 end-page: 267 ident: b55 article-title: Improving the performance of collective operations in MPICH publication-title: European parallel virtual machine/message passing interface users’ group meeting – volume: 2016 year: 2016 ident: b28 article-title: Spectral nonlinearly embedded clustering algorithm publication-title: Mathematical Problems in Engineering – start-page: 325 year: 1976 end-page: 327 ident: b14 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Transactions on Systems, Man, and Cybernetics – year: 2020 ident: b47 article-title: Outlier-robust multi-view clustering for uncertain data publication-title: Knowledge-Based Systems – volume: 45 start-page: 4358 year: 2012 end-page: 4369 ident: b22 article-title: Fast semi-supervised clustering with enhanced spectral embedding publication-title: Pattern Recognition – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: b56 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing – volume: 6 start-page: 1 year: 2010 end-page: 26 ident: b1 article-title: Clustering for metric and nonmetric distance measures publication-title: ACM Transactions on Algorithms (TALG) – volume: 11 start-page: 1074 year: 1992 end-page: 1085 ident: b19 article-title: New spectral methods for ratio cut partitioning and clustering publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems – volume: 30 start-page: 1265 year: 2018 end-page: 1271 ident: b57 article-title: Spectral embedded adaptive neighbors clustering publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 96 year: 2020 ident: b46 article-title: Clustering analysis using an adaptive fused distance publication-title: Engineering Applications of Artificial Intelligence – reference: , 547, 723–745. – volume: 27 start-page: 1151 year: 2006 end-page: 1159 ident: b33 article-title: A local mean-based nonparametric classifier publication-title: Pattern Recognition Letters – volume: 62 start-page: 22 year: 2014 end-page: 31 ident: b35 article-title: A data-driven approach to predict the success of bank telemarketing publication-title: Decision Support Systems – reference: Moore, A., Hall, J., Kreibich, C., Harris, E., & Pratt, I. (2003). Architecture of a network monitor. In – volume: 28 start-page: 135 year: 2002 end-page: 151 ident: b3 article-title: An updated set of basic linear algebra subprograms (BLAS) publication-title: ACM Transactions on Mathematical Software – year: 2017 ident: b12 article-title: UCI Machine learning repository – volume: 26 start-page: 214 year: 2004 end-page: 225 ident: b16 article-title: Spectral grouping using the Nystrom method publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: , 1–16. – reference: Sharma, K. K., & Seal, A. (0000). Multi-view spectral clustering for uncertain objects. – year: 2019 ident: b45 article-title: Modeling uncertain data using Monte Carlo integration method for clustering publication-title: Expert Systems with Applications – year: 1999 ident: b60 article-title: TRLAN user guide – volume: 36 start-page: 8443 year: 2009 end-page: 8448 ident: b62 article-title: Nonparametric classification based on local mean and class statistics publication-title: Expert Systems with Applications – year: 1999 ident: b4 article-title: Metric spaces of non-positive curvature – start-page: 639 year: 2013 end-page: 646 ident: b2 article-title: SCADAVT-A framework for SCADA security testbed based on virtualization technology publication-title: 38th Annual IEEE conference on local computer networks – volume: 77 start-page: 229 year: 2012 end-page: 242 ident: b7 article-title: Spectral clustering: a semi-supervised approach publication-title: Neurocomputing – start-page: 362 year: 2006 end-page: 371 ident: b27 article-title: The relationships among various nonnegative matrix factorization methods for clustering publication-title: Sixth international conference on data mining – volume: 14 start-page: 1277 year: 2008 end-page: 1284 ident: b10 article-title: Geometry-based edge clustering for graph visualization publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 144 start-page: 2787 issue: 7 year: 2016 ident: 10.1016/j.eswa.2020.114326_b50 article-title: Positive definite matrices and the S-divergence publication-title: Proceedings of the Americal Mathematical Society doi: 10.1090/proc/12953 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 10.1016/j.eswa.2020.114326_b48 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – volume: 7 start-page: 55121 year: 2019 ident: 10.1016/j.eswa.2020.114326_b24 article-title: Fuzzy k-means using non-linear s-distance publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2910195 – year: 1999 ident: 10.1016/j.eswa.2020.114326_b4 – volume: 166 start-page: 42 year: 2019 ident: 10.1016/j.eswa.2020.114326_b52 article-title: Density-sensitive fuzzy kernel maximum entropy clustering algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.12.007 – volume: 67 start-page: 115 year: 2017 ident: 10.1016/j.eswa.2020.114326_b38 article-title: A new k-harmonic nearest neighbor classifier based on the multi-local means publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.09.031 – volume: 35 start-page: 1690 issue: 7 year: 2013 ident: 10.1016/j.eswa.2020.114326_b25 article-title: Learning full pairwise affinities for spectral segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.237 – volume: 77 start-page: 229 issue: 1 year: 2012 ident: 10.1016/j.eswa.2020.114326_b7 article-title: Spectral clustering: a semi-supervised approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.09.002 – year: 1995 ident: 10.1016/j.eswa.2020.114326_b30 – volume: 27 start-page: 1151 issue: 10 year: 2006 ident: 10.1016/j.eswa.2020.114326_b33 article-title: A local mean-based nonparametric classifier publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.12.016 – volume: 25 start-page: 713 issue: 1 year: 2015 ident: 10.1016/j.eswa.2020.114326_b51 article-title: Conic geometric optimization on the manifold of positive definite matrices publication-title: SIAM Journal on Optimization doi: 10.1137/140978168 – volume: 26 start-page: 214 issue: 2 year: 2004 ident: 10.1016/j.eswa.2020.114326_b16 article-title: Spectral grouping using the Nystrom method publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.1262185 – ident: 10.1016/j.eswa.2020.114326_b34 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.eswa.2020.114326_b63 article-title: Sequence clustering in bioinformatics: an empirical study publication-title: Briefings in Bioinformatics – volume: 100 start-page: 67 year: 2017 ident: 10.1016/j.eswa.2020.114326_b5 article-title: K- Means clustering with a new divergence-based distance metric: Convergence and performance analysis publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.09.025 – volume: 28 start-page: 135 issue: 2 year: 2002 ident: 10.1016/j.eswa.2020.114326_b3 article-title: An updated set of basic linear algebra subprograms (BLAS) publication-title: ACM Transactions on Mathematical Software doi: 10.1145/567806.567807 – volume: 96 year: 2020 ident: 10.1016/j.eswa.2020.114326_b46 article-title: Clustering analysis using an adaptive fused distance publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103928 – start-page: 298 year: 2004 ident: 10.1016/j.eswa.2020.114326_b29 article-title: Segmentation of 3D meshes through spectral clustering – start-page: 325 issue: 4 year: 1976 ident: 10.1016/j.eswa.2020.114326_b14 article-title: The distance-weighted k-nearest-neighbor rule publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1976.5408784 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.eswa.2020.114326_b56 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing doi: 10.1007/s11222-007-9033-z – year: 1997 ident: 10.1016/j.eswa.2020.114326_b59 – volume: 45 start-page: 4358 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.114326_b22 article-title: Fast semi-supervised clustering with enhanced spectral embedding publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.05.007 – year: 1998 ident: 10.1016/j.eswa.2020.114326_b49 – volume: 72 start-page: 99 year: 2018 ident: 10.1016/j.eswa.2020.114326_b11 article-title: Reliable writer identification in medieval manuscripts through page layout features: The “Avila” Bible case publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2018.03.023 – volume: 26 year: 2014 ident: 10.1016/j.eswa.2020.114326_b37 article-title: Spontaneous clustering via minimum gamma-divergence publication-title: Neural Computation doi: 10.1162/NECO_a_00547 – volume: 88 start-page: 106 year: 2020 ident: 10.1016/j.eswa.2020.114326_b42 article-title: Fuzzy C-means clustering using Jeffreys-divergence based similarity measure publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.106016 – volume: 30 start-page: 1265 issue: 4 year: 2018 ident: 10.1016/j.eswa.2020.114326_b57 article-title: Spectral embedded adaptive neighbors clustering publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2861209 – volume: 62 year: 2016 ident: 10.1016/j.eswa.2020.114326_b36 article-title: On conformal divergences and their population minimizers publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2015.2448072 – volume: 13 start-page: 216 issue: 2 year: 2005 ident: 10.1016/j.eswa.2020.114326_b20 article-title: A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2004.840134 – ident: 10.1016/j.eswa.2020.114326_b44 doi: 10.1016/j.ins.2020.08.080 – year: 2020 ident: 10.1016/j.eswa.2020.114326_b47 article-title: Outlier-robust multi-view clustering for uncertain data publication-title: Knowledge-Based Systems – volume: 8 start-page: 679 issue: 3 year: 2012 ident: 10.1016/j.eswa.2020.114326_b13 article-title: Business intelligence for enterprise systems: a survey publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2012.2188804 – volume: 6 start-page: 1 issue: 4 year: 2010 ident: 10.1016/j.eswa.2020.114326_b1 article-title: Clustering for metric and nonmetric distance measures publication-title: ACM Transactions on Algorithms (TALG) doi: 10.1145/1824777.1824779 – volume: 36 start-page: 8443 issue: 4 year: 2009 ident: 10.1016/j.eswa.2020.114326_b62 article-title: Nonparametric classification based on local mean and class statistics publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.10.041 – year: 2017 ident: 10.1016/j.eswa.2020.114326_b12 – ident: 10.1016/j.eswa.2020.114326_b41 – volume: 83 start-page: 163 issue: 1 year: 2015 ident: 10.1016/j.eswa.2020.114326_b39 article-title: Nonparametric statistics: A step-by-step approach publication-title: International Statistical Review doi: 10.1111/insr.12095_3 – year: 1999 ident: 10.1016/j.eswa.2020.114326_b60 – start-page: 241 year: 2003 ident: 10.1016/j.eswa.2020.114326_b18 article-title: Data decomposition for parallel k-means clustering – volume: 5 start-page: 361 issue: Apr year: 2004 ident: 10.1016/j.eswa.2020.114326_b26 article-title: Rcv1: A new benchmark collection for text categorization research publication-title: Journal of Machine Learning Research – volume: 14 start-page: 1277 issue: 6 year: 2008 ident: 10.1016/j.eswa.2020.114326_b10 article-title: Geometry-based edge clustering for graph visualization publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2008.135 – start-page: 81 issue: 1 year: 1984 ident: 10.1016/j.eswa.2020.114326_b43 article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1984.4767478 – volume: 24 start-page: 1650 issue: 12 year: 2002 ident: 10.1016/j.eswa.2020.114326_b32 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2002.1114856 – ident: 10.1016/j.eswa.2020.114326_b6 – volume: 2016 year: 2016 ident: 10.1016/j.eswa.2020.114326_b28 article-title: Spectral nonlinearly embedded clustering algorithm publication-title: Mathematical Problems in Engineering – volume: 60 start-page: 6182 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.114326_b58 article-title: Geodesic convexity and covariance estimation publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2012.2218241 – start-page: 639 year: 2013 ident: 10.1016/j.eswa.2020.114326_b2 article-title: SCADAVT-A framework for SCADA security testbed based on virtualization technology – start-page: 281 year: 2007 ident: 10.1016/j.eswa.2020.114326_b9 article-title: Map-reduce for machine learning on multicore – start-page: 257 year: 2003 ident: 10.1016/j.eswa.2020.114326_b55 article-title: Improving the performance of collective operations in MPICH – volume: 79 start-page: 60 year: 2016 ident: 10.1016/j.eswa.2020.114326_b40 article-title: Geometric divergence based fuzzy clustering with strong resilience to noise features publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.04.013 – volume: 62 start-page: 22 year: 2014 ident: 10.1016/j.eswa.2020.114326_b35 article-title: A data-driven approach to predict the success of bank telemarketing publication-title: Decision Support Systems doi: 10.1016/j.dss.2014.03.001 – volume: 170 start-page: 26 year: 2019 ident: 10.1016/j.eswa.2020.114326_b53 article-title: Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.01.026 – volume: 70 start-page: 361 year: 2014 ident: 10.1016/j.eswa.2020.114326_b17 article-title: Improved pseudo nearest neighbor classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.07.020 – start-page: 362 year: 2006 ident: 10.1016/j.eswa.2020.114326_b27 article-title: The relationships among various nonnegative matrix factorization methods for clustering – volume: 87 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.114326_b54 article-title: CONFIRM–Clustering of noisy form images using robust matching publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.10.004 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.eswa.2020.114326_b15 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.10.010 – volume: 38 start-page: 10839 issue: 9 year: 2011 ident: 10.1016/j.eswa.2020.114326_b23 article-title: Particle swarm optimization based K-means clustering approach for security assessment in power systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.086 – year: 2019 ident: 10.1016/j.eswa.2020.114326_b45 article-title: Modeling uncertain data using Monte Carlo integration method for clustering publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.06.050 – volume: 6 start-page: 1024 issue: 7 year: 2012 ident: 10.1016/j.eswa.2020.114326_b21 article-title: Acceleration of fractal image compression using fuzzy clustering and discrete-cosine-transform-based metric publication-title: IET Image Processing doi: 10.1049/iet-ipr.2011.0181 – volume: 33 start-page: 568 issue: 3 year: 2010 ident: 10.1016/j.eswa.2020.114326_b8 article-title: Parallel spectral clustering in distributed systems publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.88 – ident: 10.1016/j.eswa.2020.114326_b31 – volume: 11 start-page: 1074 issue: 9 year: 1992 ident: 10.1016/j.eswa.2020.114326_b19 article-title: New spectral methods for ratio cut partitioning and clustering publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/43.159993 – year: 2019 ident: 10.1016/j.eswa.2020.114326_b61 article-title: Fast communication-efficient spectral clustering over distributed data publication-title: IEEE Transactions on Big Data |
| SSID | ssj0017007 |
| Score | 2.5331893 |
| Snippet | The spectral clustering algorithm is extensively employed in different aspects, especially in the field of pattern recognition. However, the efficient... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 114326 |
| SubjectTerms | Distributed computing Generalized mean S-distance Spectral clustering Symmetry favored k-nearest neighbors |
| Title | Spectral embedded generalized mean based k-nearest neighbors clustering with S-distance |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.114326 |
| Volume | 169 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBHlJR-4Ra429iZ2jhUqgh4qpBaxt8iOHdFlG6rdtBR-PTPxI6uCKkDiEkVOHEfzjSbjycw3hLwWttSiFbBNta1gSKHFDG8V7FIs59bKUkvfbEIeHanFovowmRzGWpjLlew6dXVVnf9XqGEMwMbS2b-AOz0UBuAcQIcjwA7HPwIeO8pj-CJzZ8aBWbHYJRkjT6c_4PwMI-_46bLZF9Yhge2mzzqMjxpsu9OsLpA5IUVoj5lFBzNqxjIl7rl1H1igY33c1p_wFLYZeLGjLfnc6WzI6E6XnfYpAt-DioboA8_HXD8fEotlMWMOko8tSjbPffudPectq5KCldK3Q0ym17dp-cWM-4jCcs9tviE3FB8ojQW_xpk9fIWPcTFciyPJaa7KW2SHy6JSU7Kz__5gcZj-KcmZL56PLxdKqHy23_WVfu-mbLkeJ_fJ3bBnoPse6wdk4rqH5F7sx0GDeX5EPkXoaYSebkFPEXo6QE8T9DRBT0foKQJKR-gfk49vD07evGOhcQZrwIPrWSU0dyX4_k64tnCNVIVVThttrDJqZnJu4AajS5HrAsYbXhkkdVJ2XjjunHhCpt3Xzj0ltOTKylk7a4USc9W0Oi8Nb0pwGuetM9LukjzKqW4Cqzw2N1nVMX1wWaNsa5Rt7WW7S7I059xzqtx4dxHFXwev0Ht7NWjLDfOe_eO85-TOqOgvyLRfX7iX5HZz2Z9u1q-CUv0EpGiJsQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+embedded+generalized+mean+based+k-nearest+neighbors+clustering+with+S-distance&rft.jtitle=Expert+systems+with+applications&rft.au=Sharma%2C+Krishna+Kumar&rft.au=Seal%2C+Ayan&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=169&rft_id=info:doi/10.1016%2Fj.eswa.2020.114326&rft.externalDocID=S0957417420310186 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |