Semantic segmentation of clouds in satellite images based on U-Net++ architecture and attention mechanism

•Proposed U-Net++ based network with attention mechanism for cloud segmentation.•Proposed SEUNet++ achieves an IoU score of 91.8 %.•Transfer learning helps to improve the segmentation results.•SEUNet++ performs better than the original U-Net++ architecture.•SEUNet++ improves the state-of-the-art by...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 209; p. 118380
Main Authors: Kaur Buttar, Preetpal, Sachan, Manoj Kumar
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.12.2022
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Proposed U-Net++ based network with attention mechanism for cloud segmentation.•Proposed SEUNet++ achieves an IoU score of 91.8 %.•Transfer learning helps to improve the segmentation results.•SEUNet++ performs better than the original U-Net++ architecture.•SEUNet++ improves the state-of-the-art by lifting the IoU score by 0.23 %. The presence of clouds in satellite imagery may pose hindrances to the accurate and reliable analysis of the objects present on the land. Therefore, automatic cloud detection is a vital pre-processing step before lending the satellite images to any further analysis. This is a challenging task due to the varying thickness and densities of clouds. It is also very difficult to distinguish clouds from certain terrains such as snow and white sandy beaches. This paper proposes a deep learning based algorithm to solve the problem of cloud segmentation on the Landsat 8 multispectral dataset, 95-Cloud: SEUNet++. Specifically, the proposed model consists of a U-Net++ semantic segmentation model with a lightweight channel attention mechanism. We also experimented with using different encoder backbones in the U-Net++ encoder-decoder architecture such as ResNet (Residual Neural Networks) variants including ResNet-18, ResNet-34, ResNet-50, and ResNet-101, DenseNet-264, CSPNet (Cross Stage Partial Network), and EfficientNet-B8 and compared their performance. The experimental results show that the proposed architecture achieves an IoU (Intersection over Union) score of 91.8 %, improving the state-of-the-art on the task by 0.23 %. It also boosts the accuracy, precision, and recall values creating crisp cloud boundaries and detecting even thin layers of clouds. We also experimented using transfer learning and found that it has a positive impact on the cloud segmentation task. The proposed model also beats the original U-Net++ architecture in terms of various evaluation metrics such as the IoU score, accuracy, precision, and recall. The experimental results thereby demonstrate that our model is computationally efficient and achieves precise segmentation results.
AbstractList •Proposed U-Net++ based network with attention mechanism for cloud segmentation.•Proposed SEUNet++ achieves an IoU score of 91.8 %.•Transfer learning helps to improve the segmentation results.•SEUNet++ performs better than the original U-Net++ architecture.•SEUNet++ improves the state-of-the-art by lifting the IoU score by 0.23 %. The presence of clouds in satellite imagery may pose hindrances to the accurate and reliable analysis of the objects present on the land. Therefore, automatic cloud detection is a vital pre-processing step before lending the satellite images to any further analysis. This is a challenging task due to the varying thickness and densities of clouds. It is also very difficult to distinguish clouds from certain terrains such as snow and white sandy beaches. This paper proposes a deep learning based algorithm to solve the problem of cloud segmentation on the Landsat 8 multispectral dataset, 95-Cloud: SEUNet++. Specifically, the proposed model consists of a U-Net++ semantic segmentation model with a lightweight channel attention mechanism. We also experimented with using different encoder backbones in the U-Net++ encoder-decoder architecture such as ResNet (Residual Neural Networks) variants including ResNet-18, ResNet-34, ResNet-50, and ResNet-101, DenseNet-264, CSPNet (Cross Stage Partial Network), and EfficientNet-B8 and compared their performance. The experimental results show that the proposed architecture achieves an IoU (Intersection over Union) score of 91.8 %, improving the state-of-the-art on the task by 0.23 %. It also boosts the accuracy, precision, and recall values creating crisp cloud boundaries and detecting even thin layers of clouds. We also experimented using transfer learning and found that it has a positive impact on the cloud segmentation task. The proposed model also beats the original U-Net++ architecture in terms of various evaluation metrics such as the IoU score, accuracy, precision, and recall. The experimental results thereby demonstrate that our model is computationally efficient and achieves precise segmentation results.
ArticleNumber 118380
Author Sachan, Manoj Kumar
Kaur Buttar, Preetpal
Author_xml – sequence: 1
  givenname: Preetpal
  surname: Kaur Buttar
  fullname: Kaur Buttar, Preetpal
  email: preetpal@sliet.ac.in
– sequence: 2
  givenname: Manoj Kumar
  surname: Sachan
  fullname: Sachan, Manoj Kumar
BookMark eNp9kMtOwzAQRS1UJFrgB1h5XyX4kdipxAZVvKQKFpS15Tjj1lXiINsF8fckCisWXY1GM-dK9yzQzPceELqhJKeEittDDvFb54wwllNa8YqcoTmtJM-EXPEZmpNVKbOCyuICLWI8EEIlIXKO3Dt02idncIRdBz7p5HqPe4tN2x-biJ3HUSdoW5cAu07vIOJaR2jw8PaRvUJaLrEOZj_cTToGwNo3WKc0ZI1JHZi99i52V-jc6jbC9d-8RNvHh-36Odu8Pb2s7zeZYbRMGYcSGOes5JWs6LCUpLGNtYxaUfCiXtVCCiFlXVXa1IUAXhvDiahFac3K8ktUTbEm9DEGsMq4qVQK2rWKEjUaUwc1GlOjMTUZG1D2D_0MQ-Pwcxq6myAYOn05CCoaB95A48IgRDW9O4X_AnoUiLU
CitedBy_id crossref_primary_10_3390_rs17172946
crossref_primary_10_3390_app15084339
crossref_primary_10_1109_JSTARS_2025_3568437
crossref_primary_10_1109_TGRS_2024_3464862
crossref_primary_10_1109_LGRS_2024_3399774
crossref_primary_10_3390_rs16234583
crossref_primary_10_3389_fnbot_2023_1267231
crossref_primary_10_1109_JSTARS_2023_3257042
crossref_primary_10_1007_s11760_024_03717_w
crossref_primary_10_1016_j_jenvman_2025_126479
crossref_primary_10_1109_ACCESS_2025_3570269
crossref_primary_10_3390_rs17101677
crossref_primary_10_1109_JSTARS_2025_3539322
crossref_primary_10_3390_rs16081321
Cites_doi 10.1016/j.rse.2014.12.014
10.1145/3065386
10.5194/isprs-annals-V-3-2020-505-2020
10.14358/PERS.72.10.1179
10.1109/TGRS.2020.2994349
10.1016/j.ecoinf.2021.101279
10.1109/TGRS.2015.2504369
10.1016/j.rse.2019.05.024
10.3390/rs12122001
10.3390/rs6064907
10.3390/rs11212591
10.3390/rs11040403
10.1109/JSTARS.2021.3070786
10.1016/j.neucom.2021.02.091
10.3390/rs12213530
10.1080/19942060.2021.2009374
10.1109/TPAMI.2016.2644615
10.1109/TGRS.2020.2991398
10.3390/sym12061056
10.3390/rs11192312
10.1109/WACV.2017.58
10.1117/12.2529586
10.1016/j.rse.2019.03.007
10.1109/JSTARS.2017.2686488
10.1016/j.rse.2011.10.028
10.1109/TPAMI.2019.2913372
10.3390/rs10071079
10.1016/j.isprsjprs.2017.08.011
10.1109/TPAMI.2017.2699184
10.1007/BF00344251
10.1109/TGRS.2019.2904868
10.1109/TGRS.2013.2290237
10.1016/j.catena.2021.105189
10.1109/ACCESS.2020.2970836
10.1109/3DV.2016.79
10.3390/s21062153
10.1109/TGRS.2017.2692264
10.1109/ACCESS.2019.2951750
10.1016/j.aquaeng.2020.102053
10.1080/19942060.2021.1974093
10.3390/ijgi8090390
10.3390/rs10060877
10.1109/CVPRW50498.2020.00203
10.1016/j.rse.2019.03.039
10.3390/rs11151774
10.3390/rs10101626
10.1109/CIBCB48159.2020.9277638
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.118380
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_118380
S0957417422014932
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c215t-3e5e2332538781e5e50dfdff21f6434b9b676677b88acb46e3bcc306b65fc9f3
ISSN 0957-4174
IngestDate Sat Nov 29 07:04:35 EST 2025
Tue Nov 18 22:43:31 EST 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloud segmentation
Semantic segmentation
U-Net
95-Cloud
ResNet
Multispectral satellite data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c215t-3e5e2332538781e5e50dfdff21f6434b9b676677b88acb46e3bcc306b65fc9f3
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_118380
crossref_primary_10_1016_j_eswa_2022_118380
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_118380
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Iglovikov, V., Mushinskiy, S., & Osin, V. (2017). Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition.
Retrieved from http://arxiv.org/abs/1908.03809.
Izmailov, Podoprikhin, Garipov, Vetrov, Wilson (b0185) 2018
Chai, Newsam, Zhang, Qiu, Huang (b0050) 2019; 225
Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b0045) 2020; 11
Fan, Xu, Wu, Zheng, Tao (b0085) 2020; 8

Huang, Wang, Jia, Lu, Li, He (b0155) 2021; 443
Krizhevsky, Sutskever, Hinton (b0225) 2012
Zhao, Shi, Qi, Wang, Jia (b0425) 2017; 2017
Yi, Zhang, Zhang, Zhang, Li, Zhao (b0415) 2019; 11
Simonyan, Zisserman (b0345) 2015
Jiao, Huo, Hu, Tang (b0210) 2020; 12
Woo, Park, Lee, Kweon (b0385) 2018
Retrieved from http://arxiv.org/abs/1911.02685.
Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully convolutional neural networks for volumetric medical image segmentation.
Penatti, Nogueira, dos Santos (b0305) 2015; 2015
Zhao, Du, Wang, Emery (b0430) 2017; 132
(April), 464–472. https://doi.org/10.1109/WACV.2017.58.
,
565–571. https://doi.org/10.1109/3DV.2016.79.
-
.
Retrieved from https://arxiv.org/abs/1412.6980.
505–511. https://doi.org/10.5194/isprs-annals-V-3-2020-505-2020.
Retrieved from http://arxiv.org/abs/1708.07120.
Mateo-García, Gómez-Chova, Amorós-López, Muñoz-Marí, Camps-Valls (b0265) 2018; 10
Ian Goodfellow, Yoshua Bengio, A. C. (2016).
(pp. 1462–1471). Lille, France: PMLR. Retrieved from
Howe, J., Pula, K., & Reite, A. A. (2019). Conditional Generative Adversarial Networks for Data Augmentation and Adaptation in Remotely Sensed Imagery.
Retrieved from http://arxiv.org/abs/1804.05340.
Retrieved from https://arxiv.org/abs/1412.7062.
Retrieved from http://arxiv.org/abs/1803.09820.
Hu, Shen, Albanie, Sun, Wu (b0145) 2020; 42
(Vol. 28). Curran Associates, Inc. Retrieved from
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., … Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
Retrieved from https://arxiv.org/abs/1706.06169.
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., … He, Q. (2019). A Comprehensive Survey on Transfer Learning.
MIT Press. Retrieved from
Banan, Nasiri, Taheri-Garavand (b0025) 2020; 89
Shotton, Johnson, Cipolla (b0340) 2008; 2008
Xie, Shi, Shi, Yin, Zhao (b0395) 2017; 10
Qiu, Zhu, He (b0315) 2019; 231
Ulmas, P., & Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification.
Long, Shelhamer, Darrell (b0255) 2015
Retrieved from https://arxiv.org/abs/2003.02899.
Irish, Barker, Goward, Arvidson (b0180) 2006; 72
Chen, Papandreou, Kokkinos, Murphy, Yuille (b0065) 2018
Retrieved from http://arxiv.org/abs/1609.04747.
Bharath, K. (2021). U-Net Architecture for Image Segmentation. Retrieved March 21, 2022, from
Guo, Cao, Liu, Gao (b0120) 2020; 12
Zhang, Guindon, Li (b0420) 2014; 52
Du, S. (2020, February 25). Understanding Dice Loss for Crisp Boundary Detection. Retrieved March 22, 2022, from AI Salon website
Zi, Xie, Jiang (b0460) 2018; 10
Retrieved from http://arxiv.org/abs/1809.04985.
Shamshirband, Rabczuk, Chau (b0335) 2019; 7
Hou, Liu, Zhang, Li (b0130) 2021; 21
Tan, M., & Le, Q. V. (2021).
Peng, Zhang, Yu, Luo, Sun (b0310) 2017; 2017
1571–1580. IEEE Computer Society. https://doi.org/10.1109/CVPRW50498.2020.00203.
Li, Tan, Chen, Luo, Gao, Jia, Wang (b0235) 2020; 2020
Noh, Hong, Han (b0295) 2015
Gregor, K., Danihelka, I., Graves, A., Rezende, D., & Wierstra, D. (2015). DRAW: A Recurrent Neural Network For Image Generation. In F. Bach & D. Blei (Eds.)
Liu, W., & Zeng, K. (2018). SparseNet: A Sparse DenseNet for Image Classification.
Wu, H., Zhang, J., Huang, K., Liang, K., & Yu, Y. (2019). FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.
Lin, Milan, Shen, Reid (b0245) 2017; 2017
Fukushima (b0100) 1980; 36
Jeppesen, Jacobsen, Inceoglu, Skjødeberg (b0200) 2019; 229
Kingma, D. P., & Ba, J. L. (2014). Adam: A Method for Stochastic Optimization.
Jadon, S. (2020).
Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Bengio (b0400) 2015
Mohajerani, Saeedi (b0280) 2019; 1029–1032
Retrieved from http://arxiv.org/abs/1903.07288.
Jiao, Huo, Hu, Tang (b0215) 2020; 12
Bai, Mas, Koshimura (b0020) 2018; 10
Hughes, Kennedy (b0165) 2019; 11
Mohajerani, Asad, Abhishek, Sharma, van Duynhoven, Saeedi (b0275) 2019; 2019
Rakhlin, Davydow, Nikolenko (b0320) 2018; 2018
Retrieved from http://arxiv.org/abs/1903.11816.
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b0440) 2018
Chen, Zhang, Kashani, Jun, Bateni, Band, Chau (b0055) 2022; 16
Krizhevsky, Sutskever, Hinton (b0230) 2017; 60
Mohajerani, Saeedi (b0285) 2021; 14
Zhu, Woodcock (b0450) 2012; 118
Ma, D., Tang, P., & Zhao, L.-J. (2018). SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro.
Retrieved from http://arxiv.org/abs/1704.04861.
Chen, Chen, Chen, Jia, Cao, Liu (b0070) 2016; 54
Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: Part 1 - learning rate, batch size, momentum, and weight decay.
Öztürk, Özkaya, Akdemir, Seyfi (b0300) 2018; 2018
Hughes, Hayes (b0160) 2014; 6
Li, He, Fang, Zheng, Fu, Yu (b0240) 2019; 11
Guo, Yang, Yue, Tan, Hou, Li (b0115) 2021; 59
Ronneberger, Fischer, Brox (b0325) 2015
Dwarampudi, M., & Reddy, N. V. S. (2019). Effects of padding on LSTMs and CNNs.
Zheng, Wei, Sun, Anas, Li (b0435) 2019; 8
Badrinarayanan, Kendall, Cipolla (b0010) 2017; 39
Gonzales, Sakla (b0105) 2019
Afan, Osman, Essam, Ahmed, Huang, Kisi, El-Shafie (b0005) 2021; 15
He, Zhang, Ren, Sun (b0125) 2016
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. (2015). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs.
Fraz, Javed, Basit (b0095) 2008
Ruder, S. (2016). An overview of gradient descent optimization algorithms.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate.
Bragagnolo, Rezende, da Silva, Grzybowski (b0040) 2021; 201
Ji, Dai, Lu, Zhang (b0205) 2021; 59
Bragagnolo, da Silva, Grzybowski (b0035) 2021; 62
arXiv:1409.0473. Retrieved from http://arxiv.org/abs/1409.0473.
Neves, A., Körting, T., Fonseca, L., Girolamo Neto, C., Wittich, D., Costa, G., & Heipke, C. (2020). Semantic segmentation of Brazilian Savanna vegetation using high spatial resolution satellite data and U-Net.
Zhu, Wang, Woodcock (b0445) 2015; 159
Tan, Le (b0365) 2019
Wang, C. Y., Mark Liao, H. Y., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN.
Smith, L. N., & Topin, N. (2017). Super-Convergence: Very Fast Training of Residual Networks Using Large Learning Rates.
Smith, L. N. (2017). Cyclical learning rates for training neural networks.
Xu, Wong, Clausi (b0405) 2017; 55
Francis, Sidiropoulos, Muller (b0090) 2019; 11
Jaderberg, M., Simonyan, K., Zisserman, A., & kavukcuoglu, koray. (2015). Spatial Transformer Networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.)
Huang, Liu, Van Der Maaten, Weinberger (b0150) 2017; 2017
Yang, Guo, Yue, Liu, Hu, Li (b0410) 2019; 57
Penatti (10.1016/j.eswa.2022.118380_b0305) 2015; 2015
Irish (10.1016/j.eswa.2022.118380_b0180) 2006; 72
Li (10.1016/j.eswa.2022.118380_b0240) 2019; 11
Bragagnolo (10.1016/j.eswa.2022.118380_b0040) 2021; 201
Huang (10.1016/j.eswa.2022.118380_b0150) 2017; 2017
Francis (10.1016/j.eswa.2022.118380_b0090) 2019; 11
Qiu (10.1016/j.eswa.2022.118380_b0315) 2019; 231
Buslaev (10.1016/j.eswa.2022.118380_b0045) 2020; 11
Fukushima (10.1016/j.eswa.2022.118380_b0100) 1980; 36
10.1016/j.eswa.2022.118380_b0270
10.1016/j.eswa.2022.118380_b0390
10.1016/j.eswa.2022.118380_b0190
Xu (10.1016/j.eswa.2022.118380_b0405) 2017; 55
Zhang (10.1016/j.eswa.2022.118380_b0420) 2014; 52
Bragagnolo (10.1016/j.eswa.2022.118380_b0035) 2021; 62
10.1016/j.eswa.2022.118380_b0075
Mohajerani (10.1016/j.eswa.2022.118380_b0275) 2019; 2019
Peng (10.1016/j.eswa.2022.118380_b0310) 2017; 2017
10.1016/j.eswa.2022.118380_b0350
10.1016/j.eswa.2022.118380_b0030
Chen (10.1016/j.eswa.2022.118380_b0070) 2016; 54
Gonzales (10.1016/j.eswa.2022.118380_b0105) 2019
10.1016/j.eswa.2022.118380_b0195
Krizhevsky (10.1016/j.eswa.2022.118380_b0230) 2017; 60
10.1016/j.eswa.2022.118380_b0355
Simonyan (10.1016/j.eswa.2022.118380_b0345) 2015
10.1016/j.eswa.2022.118380_b0110
Rakhlin (10.1016/j.eswa.2022.118380_b0320) 2018; 2018
Afan (10.1016/j.eswa.2022.118380_b0005) 2021; 15
Badrinarayanan (10.1016/j.eswa.2022.118380_b0010) 2017; 39
Fraz (10.1016/j.eswa.2022.118380_b0095) 2008
Tan (10.1016/j.eswa.2022.118380_b0365) 2019
Hou (10.1016/j.eswa.2022.118380_b0130) 2021; 21
Zhu (10.1016/j.eswa.2022.118380_b0445) 2015; 159
Chen (10.1016/j.eswa.2022.118380_b0055) 2022; 16
Yang (10.1016/j.eswa.2022.118380_b0410) 2019; 57
Zhu (10.1016/j.eswa.2022.118380_b0450) 2012; 118
Ji (10.1016/j.eswa.2022.118380_b0205) 2021; 59
10.1016/j.eswa.2022.118380_b0380
10.1016/j.eswa.2022.118380_b0060
Jeppesen (10.1016/j.eswa.2022.118380_b0200) 2019; 229
Shamshirband (10.1016/j.eswa.2022.118380_b0335) 2019; 7
Lin (10.1016/j.eswa.2022.118380_b0245) 2017; 2017
10.1016/j.eswa.2022.118380_b0140
10.1016/j.eswa.2022.118380_b0260
Krizhevsky (10.1016/j.eswa.2022.118380_b0225) 2012
10.1016/j.eswa.2022.118380_b0220
Huang (10.1016/j.eswa.2022.118380_b0155) 2021; 443
Hu (10.1016/j.eswa.2022.118380_b0145) 2020; 42
Öztürk (10.1016/j.eswa.2022.118380_b0300) 2018; 2018
Guo (10.1016/j.eswa.2022.118380_b0120) 2020; 12
Mohajerani (10.1016/j.eswa.2022.118380_b0280) 2019; 1029–1032
Mohajerani (10.1016/j.eswa.2022.118380_b0285) 2021; 14
Yi (10.1016/j.eswa.2022.118380_b0415) 2019; 11
Mateo-García (10.1016/j.eswa.2022.118380_b0265) 2018; 10
Chen (10.1016/j.eswa.2022.118380_b0065) 2018
He (10.1016/j.eswa.2022.118380_b0125) 2016
Hughes (10.1016/j.eswa.2022.118380_b0160) 2014; 6
Jiao (10.1016/j.eswa.2022.118380_b0210) 2020; 12
Chai (10.1016/j.eswa.2022.118380_b0050) 2019; 225
10.1016/j.eswa.2022.118380_b0170
10.1016/j.eswa.2022.118380_b0290
Bai (10.1016/j.eswa.2022.118380_b0020) 2018; 10
10.1016/j.eswa.2022.118380_b0175
Li (10.1016/j.eswa.2022.118380_b0235) 2020; 2020
10.1016/j.eswa.2022.118380_b0250
Ronneberger (10.1016/j.eswa.2022.118380_b0325) 2015
10.1016/j.eswa.2022.118380_b0370
10.1016/j.eswa.2022.118380_b0135
Zhao (10.1016/j.eswa.2022.118380_b0425) 2017; 2017
10.1016/j.eswa.2022.118380_b0375
10.1016/j.eswa.2022.118380_b0330
Hughes (10.1016/j.eswa.2022.118380_b0165) 2019; 11
10.1016/j.eswa.2022.118380_b0015
10.1016/j.eswa.2022.118380_b0455
Banan (10.1016/j.eswa.2022.118380_b0025) 2020; 89
Shotton (10.1016/j.eswa.2022.118380_b0340) 2008; 2008
Guo (10.1016/j.eswa.2022.118380_b0115) 2021; 59
Zhou (10.1016/j.eswa.2022.118380_b0440) 2018
Zheng (10.1016/j.eswa.2022.118380_b0435) 2019; 8
Fan (10.1016/j.eswa.2022.118380_b0085) 2020; 8
Jiao (10.1016/j.eswa.2022.118380_b0215) 2020; 12
10.1016/j.eswa.2022.118380_b0080
10.1016/j.eswa.2022.118380_b0360
Xu (10.1016/j.eswa.2022.118380_b0400) 2015
Izmailov (10.1016/j.eswa.2022.118380_b0185) 2018
Noh (10.1016/j.eswa.2022.118380_b0295) 2015
Long (10.1016/j.eswa.2022.118380_b0255) 2015
Zhao (10.1016/j.eswa.2022.118380_b0430) 2017; 132
Xie (10.1016/j.eswa.2022.118380_b0395) 2017; 10
Zi (10.1016/j.eswa.2022.118380_b0460) 2018; 10
Woo (10.1016/j.eswa.2022.118380_b0385) 2018
References_xml – reference: . Retrieved from http://arxiv.org/abs/1804.05340.
– volume: 89
  year: 2020
  ident: b0025
  article-title: Deep learning-based appearance features extraction for automated carp species identification
  publication-title: Aquacultural Engineering
– volume: 118
  start-page: 83
  year: 2012
  end-page: 94
  ident: b0450
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sensing of Environment
– volume: 59
  start-page: 700
  year: 2021
  end-page: 713
  ident: b0115
  article-title: CDnetV2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 231
  year: 2019
  ident: b0315
  article-title: Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery
  publication-title: Remote Sensing of Environment
– reference: Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: Part 1 - learning rate, batch size, momentum, and weight decay.
– reference: Jadon, S. (2020).
– volume: 11
  year: 2019
  ident: b0415
  article-title: Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network
  publication-title: Remote Sensing
– volume: 72
  start-page: 1179
  year: 2006
  end-page: 1188
  ident: b0180
  article-title: Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) algorithm
  publication-title: Photogrammetric Engineering and Remote Sensing
– reference: Ian Goodfellow, Yoshua Bengio, A. C. (2016).
– volume: 2017
  start-page: 6230
  year: 2017
  end-page: 6239
  ident: b0425
  article-title: Pyramid scene parsing network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 12
  year: 2020
  ident: b0210
  article-title: Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation
  publication-title: Remote Sensing
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0325
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
– volume: 55
  start-page: 4913
  year: 2017
  end-page: 4924
  ident: b0405
  article-title: A novel Bayesian spatial-temporal random field model applied to cloud detection from remotely sensed imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: , (April), 464–472. https://doi.org/10.1109/WACV.2017.58.
– reference: Wang, C. Y., Mark Liao, H. Y., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN.
– reference: . MIT Press. Retrieved from
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: b0100
  article-title: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b0230
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
– reference: Gregor, K., Danihelka, I., Graves, A., Rezende, D., & Wierstra, D. (2015). DRAW: A Recurrent Neural Network For Image Generation. In F. Bach & D. Blei (Eds.),
– volume: 10
  year: 2018
  ident: b0265
  article-title: Multitemporal cloud masking in the google earth engine
  publication-title: Remote Sensing
– reference: Ulmas, P., & Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification.
– reference: (pp. 1462–1471). Lille, France: PMLR. Retrieved from
– volume: 2017
  start-page: 1743
  year: 2017
  end-page: 1751
  ident: b0310
  article-title: Large kernel matters — Improve semantic segmentation by global convolutional network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 10
  start-page: 3631
  year: 2017
  end-page: 3640
  ident: b0395
  article-title: Multilevel cloud detection in remote sensing images based on deep learning
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– reference: . Retrieved from http://arxiv.org/abs/1609.04747.
– volume: 11
  year: 2019
  ident: b0240
  article-title: Semantic segmentation-based building footprint extraction using very high-resolution satellite images and multi-source GIS data
  publication-title: Remote Sensing
– reference: . Retrieved from http://arxiv.org/abs/1911.02685.
– reference: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 5
  ident: b0300
  article-title: Convolution kernel size effect on convolutional neural network in histopathological image processing applications
  publication-title: International Symposium on Fundamentals of Electrical Engineering (ISFEE)
– volume: 52
  start-page: 5540
  year: 2014
  end-page: 5547
  ident: b0420
  article-title: A robust approach for object-based detection and radiometric characterization of cloud shadow using haze optimized transformation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 159
  year: 2015
  ident: b0445
  article-title: Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sensing of Environment
– reference: Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. (2015). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs.
– reference: Dwarampudi, M., & Reddy, N. V. S. (2019). Effects of padding on LSTMs and CNNs.
– reference: ,
– reference: Kingma, D. P., & Ba, J. L. (2014). Adam: A Method for Stochastic Optimization.
– volume: 14
  start-page: 4254
  year: 2021
  end-page: 4266
  ident: b0285
  article-title: Cloud and cloud shadow segmentation for remote sensing imagery via filtered Jaccard loss function and parametric augmentation
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– reference: . Retrieved from http://arxiv.org/abs/1704.04861.
– reference: . Retrieved from https://arxiv.org/abs/1412.6980.
– reference: Smith, L. N. (2017). Cyclical learning rates for training neural networks.
– reference: Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully convolutional neural networks for volumetric medical image segmentation.
– reference: . Retrieved from https://arxiv.org/abs/1412.7062.
– volume: 57
  start-page: 6195
  year: 2019
  end-page: 6211
  ident: b0410
  article-title: CDnet: CNN-based cloud detection for remote sensing imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: . Retrieved from http://arxiv.org/abs/1809.04985.
– volume: 132
  start-page: 48
  year: 2017
  end-page: 60
  ident: b0430
  article-title: Contextually guided very-high-resolution imagery classification with semantic segments
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– year: 2015
  ident: b0345
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: 3Rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings
– volume: 225
  start-page: 307
  year: 2019
  end-page: 316
  ident: b0050
  article-title: Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks
  publication-title: Remote Sensing of Environment
– reference: -
– reference: Neves, A., Körting, T., Fonseca, L., Girolamo Neto, C., Wittich, D., Costa, G., & Heipke, C. (2020). Semantic segmentation of Brazilian Savanna vegetation using high spatial resolution satellite data and U-Net.
– reference: Iglovikov, V., Mushinskiy, S., & Osin, V. (2017). Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition.
– reference: , 505–511. https://doi.org/10.5194/isprs-annals-V-3-2020-505-2020.
– reference:
– reference: . Retrieved from http://arxiv.org/abs/1903.11816.
– volume: 1029–1032
  year: 2019
  ident: b0280
  article-title: Cloud-Net: An end-to-end cloud detection algorithm for landsat 8 imagery
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 8
  start-page: 25111
  year: 2020
  end-page: 25121
  ident: b0085
  article-title: Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network
  publication-title: IEEE Access
– volume: 42
  start-page: 2011
  year: 2020
  end-page: 2023
  ident: b0145
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 12
  year: 2020
  ident: b0215
  article-title: Refined UNet V2: End-to-end patch-wise network for noise-free cloud and shadow segmentation
  publication-title: Remote Sensing
– year: 2015
  ident: b0255
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– reference: . Retrieved from http://arxiv.org/abs/1908.03809.
– reference: (Vol. 28). Curran Associates, Inc. Retrieved from
– start-page: 3
  year: 2018
  end-page: 11
  ident: b0440
  article-title: UNet++: A Nested U-Net Architecture for Medical Image Segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– reference: Ruder, S. (2016). An overview of gradient descent optimization algorithms.
– reference: . Retrieved from https://arxiv.org/abs/2003.02899.
– volume: 10
  year: 2018
  ident: b0020
  article-title: Towards operational satellite-based damage-mapping using U-net convolutional network: A case study of 2011 Tohoku Earthquake-Tsunami
  publication-title: Remote Sensing
– volume: 59
  start-page: 732
  year: 2021
  end-page: 748
  ident: b0205
  article-title: Simultaneous cloud detection and removal from bitemporal remote sensing images using cascade convolutional neural networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 2048
  year: 2015
  end-page: 2057
  ident: b0400
  publication-title: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
– volume: 54
  start-page: 2682
  year: 2016
  end-page: 2694
  ident: b0070
  article-title: An iterative haze optimized transformation for automatic cloud/haze detection of landsat imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 62
  year: 2021
  ident: b0035
  article-title: Amazon forest cover change mapping based on semantic segmentation by U-Nets
  publication-title: Ecological Informatics
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b0010
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 443
  start-page: 26
  year: 2021
  end-page: 34
  ident: b0155
  article-title: See more than once: Kernel-sharing atrous convolution for semantic segmentation
  publication-title: Neurocomputing
– reference: . Retrieved from http://arxiv.org/abs/1803.09820.
– volume: 2017
  start-page: 5168
  year: 2017
  end-page: 5177
  ident: b0245
  article-title: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 201
  year: 2021
  ident: b0040
  article-title: Convolutional neural networks applied to semantic segmentation of landslide scars
  publication-title: CATENA
– volume: 12
  year: 2020
  ident: b0120
  article-title: Cloud detection for satellite imagery using attention-based U-net convolutional neural network
  publication-title: Symmetry
– year: 2018
  ident: b0385
  article-title: CBAM: Convolutional block attention module
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 8
  year: 2019
  ident: b0435
  article-title: Using vehicle synthesis generative adversarial networks to improve vehicle detection in remote sensing images
  publication-title: ISPRS International Journal of Geo-Information
– reference: , arXiv:1409.0473. Retrieved from http://arxiv.org/abs/1409.0473.
– reference: . Retrieved from https://arxiv.org/abs/1706.06169.
– reference: Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., … He, Q. (2019). A Comprehensive Survey on Transfer Learning.
– year: 2018
  ident: b0185
  article-title: Averaging weights leads to wider optima and better generalization
  publication-title: ArXiv Preprint
– volume: 15
  start-page: 1420
  year: 2021
  end-page: 1439
  ident: b0005
  article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 21
  start-page: 1
  year: 2021
  end-page: 21
  ident: b0130
  article-title: C-UNet: Complement UNet for remote sensing road extraction
  publication-title: Sensors
– reference: Smith, L. N., & Topin, N. (2017). Super-Convergence: Very Fast Training of Residual Networks Using Large Learning Rates.
– reference: Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., … Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
– volume: 2019
  start-page: 1965
  year: 2019
  end-page: 1969
  ident: b0275
  article-title: Cloudmaskgan: A content-aware unpaired image-to-image translation algorithm for remote sensing imagery
  publication-title: IEEE International Conference on Image Processing (ICIP)
– reference: Liu, W., & Zeng, K. (2018). SparseNet: A Sparse DenseNet for Image Classification.
– year: 2015
  ident: b0295
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: . Retrieved from http://arxiv.org/abs/1708.07120.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0225
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: , 1571–1580. IEEE Computer Society. https://doi.org/10.1109/CVPRW50498.2020.00203.
– year: 2019
  ident: b0105
  article-title: Semantic segmentation of clouds in satellite imagery using deep pre-trained U-nets
  publication-title: Proceedings - Applied Imagery Pattern Recognition Workshop
– year: 2018
  ident: b0065
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 229
  start-page: 247
  year: 2019
  end-page: 259
  ident: b0200
  article-title: A cloud detection algorithm for satellite imagery based on deep learning Remote Sensing of Environment A cloud detection algorithm for satellite imagery based on deep learning
  publication-title: Remote Sensing of Environment
– reference: Du, S. (2020, February 25). Understanding Dice Loss for Crisp Boundary Detection. Retrieved March 22, 2022, from AI Salon website:
– reference: . Retrieved from http://arxiv.org/abs/1903.07288.
– volume: 2017
  start-page: 2261
  year: 2017
  end-page: 2269
  ident: b0150
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b0365
  article-title: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– volume: 11
  year: 2019
  ident: b0165
  article-title: High-quality cloud masking of Landsat 8 imagery using convolutional neural networks
  publication-title: Remote Sensing
– reference: Ma, D., Tang, P., & Zhao, L.-J. (2018). SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro.
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 8
  ident: b0340
  article-title: Semantic texton forests for image categorization and segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– reference: , 565–571. https://doi.org/10.1109/3DV.2016.79.
– reference: Jaderberg, M., Simonyan, K., Zisserman, A., & kavukcuoglu, koray. (2015). Spatial Transformer Networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.),
– volume: 2020
  start-page: 345
  year: 2020
  end-page: 349
  ident: b0235
  article-title: Attention Unet++: A nested attention-aware U-Net for Liver CT image segmentation
  publication-title: IEEE International Conference on Image Processing (ICIP)
– volume: 16
  start-page: 248
  year: 2022
  end-page: 261
  ident: b0055
  article-title: Forecast of rainfall distribution based on fixed sliding window long short-term memory
  publication-title: Engineering Applications of Computational Fluid Mechanics
– reference: Howe, J., Pula, K., & Reite, A. A. (2019). Conditional Generative Adversarial Networks for Data Augmentation and Adaptation in Remotely Sensed Imagery.
– reference: Bharath, K. (2021). U-Net Architecture for Image Segmentation. Retrieved March 21, 2022, from
– year: 2016
  ident: b0125
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 164650
  year: 2019
  end-page: 164666
  ident: b0335
  article-title: A survey of deep learning techniques: Application in wind and solar energy resources
  publication-title: IEEE Access
– reference: .
– volume: 6
  start-page: 4907
  year: 2014
  end-page: 4926
  ident: b0160
  article-title: Automated Detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing
  publication-title: Remote Sensing
– volume: 11
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0045
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information (Switzerland)
– start-page: 232
  year: 2008
  end-page: 236
  ident: b0095
  article-title: A threshold selection method from gray-level histograms
  publication-title: 4Th IEEE International Conference on Emerging Technologies
– reference: Tan, M., & Le, Q. V. (2021).
– volume: 11
  year: 2019
  ident: b0090
  article-title: CloudFCN: Accurate and robust cloud detection for satellite imagery with deep learning
  publication-title: Remote Sensing
– volume: 10
  year: 2018
  ident: b0460
  article-title: A cloud detection method for landsat 8 images based on PCANet
  publication-title: Remote Sensing
– volume: 2018
  start-page: 257
  year: 2018
  end-page: 2574
  ident: b0320
  article-title: Land cover classification from satellite imagery with U-Net and Lovász-Softmax loss
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– reference: Wu, H., Zhang, J., Huang, K., Liang, K., & Yu, Y. (2019). FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.
– volume: 2015
  start-page: 44
  year: 2015
  end-page: 51
  ident: b0305
  article-title: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– volume: 2015
  start-page: 44
  year: 2015
  ident: 10.1016/j.eswa.2022.118380_b0305
  article-title: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– volume: 159
  year: 2015
  ident: 10.1016/j.eswa.2022.118380_b0445
  article-title: Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2014.12.014
– volume: 2018
  start-page: 257
  year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0320
  article-title: Land cover classification from satellite imagery with U-Net and Lovász-Softmax loss
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0230
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– ident: 10.1016/j.eswa.2022.118380_b0290
  doi: 10.5194/isprs-annals-V-3-2020-505-2020
– ident: 10.1016/j.eswa.2022.118380_b0360
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0300
  article-title: Convolution kernel size effect on convolutional neural network in histopathological image processing applications
  publication-title: International Symposium on Fundamentals of Electrical Engineering (ISFEE)
– volume: 72
  start-page: 1179
  year: 2006
  ident: 10.1016/j.eswa.2022.118380_b0180
  article-title: Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) algorithm
  publication-title: Photogrammetric Engineering and Remote Sensing
  doi: 10.14358/PERS.72.10.1179
– ident: 10.1016/j.eswa.2022.118380_b0190
– volume: 2008
  start-page: 1
  year: 2008
  ident: 10.1016/j.eswa.2022.118380_b0340
  article-title: Semantic texton forests for image categorization and segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.eswa.2022.118380_b0330
– volume: 59
  start-page: 732
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0205
  article-title: Simultaneous cloud detection and removal from bitemporal remote sensing images using cascade convolutional neural networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2020.2994349
– ident: 10.1016/j.eswa.2022.118380_b0370
– volume: 62
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0035
  article-title: Amazon forest cover change mapping based on semantic segmentation by U-Nets
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2021.101279
– volume: 2017
  start-page: 1743
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0310
  article-title: Large kernel matters — Improve semantic segmentation by global convolutional network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 54
  start-page: 2682
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2022.118380_b0070
  article-title: An iterative haze optimized transformation for automatic cloud/haze detection of landsat imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2015.2504369
– start-page: 6105
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0365
  article-title: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
– volume: 231
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0315
  article-title: Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.05.024
– volume: 12
  issue: 12
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0210
  article-title: Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation
  publication-title: Remote Sensing
  doi: 10.3390/rs12122001
– ident: 10.1016/j.eswa.2022.118380_b0080
– ident: 10.1016/j.eswa.2022.118380_b0175
– year: 2015
  ident: 10.1016/j.eswa.2022.118380_b0345
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 6
  start-page: 4907
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2022.118380_b0160
  article-title: Automated Detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing
  publication-title: Remote Sensing
  doi: 10.3390/rs6064907
– volume: 11
  issue: 21
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0165
  article-title: High-quality cloud masking of Landsat 8 imagery using convolutional neural networks
  publication-title: Remote Sensing
  doi: 10.3390/rs11212591
– volume: 11
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0240
  article-title: Semantic segmentation-based building footprint extraction using very high-resolution satellite images and multi-source GIS data
  publication-title: Remote Sensing
  doi: 10.3390/rs11040403
– ident: 10.1016/j.eswa.2022.118380_b0250
– volume: 14
  start-page: 4254
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0285
  article-title: Cloud and cloud shadow segmentation for remote sensing imagery via filtered Jaccard loss function and parametric augmentation
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2021.3070786
– volume: 443
  start-page: 26
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0155
  article-title: See more than once: Kernel-sharing atrous convolution for semantic segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.091
– volume: 12
  issue: 21
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0215
  article-title: Refined UNet V2: End-to-end patch-wise network for noise-free cloud and shadow segmentation
  publication-title: Remote Sensing
  doi: 10.3390/rs12213530
– volume: 2017
  start-page: 2261
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0150
  article-title: Densely connected convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2015
  ident: 10.1016/j.eswa.2022.118380_b0255
  article-title: Fully convolutional networks for semantic segmentation
– volume: 16
  start-page: 248
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2022.118380_b0055
  article-title: Forecast of rainfall distribution based on fixed sliding window long short-term memory
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2021.2009374
– ident: 10.1016/j.eswa.2022.118380_b0390
– volume: 2017
  start-page: 6230
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0425
  article-title: Pyramid scene parsing network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– ident: 10.1016/j.eswa.2022.118380_b0260
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0010
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 234
  year: 2015
  ident: 10.1016/j.eswa.2022.118380_b0325
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
– start-page: 3
  year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0440
  article-title: UNet++: A Nested U-Net Architecture for Medical Image Segmentation
– ident: 10.1016/j.eswa.2022.118380_b0455
– ident: 10.1016/j.eswa.2022.118380_b0375
– volume: 2020
  start-page: 345
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0235
  article-title: Attention Unet++: A nested attention-aware U-Net for Liver CT image segmentation
  publication-title: IEEE International Conference on Image Processing (ICIP)
– volume: 59
  start-page: 700
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0115
  article-title: CDnetV2: CNN-based cloud detection for remote sensing imagery with cloud-snow coexistence
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2020.2991398
– volume: 12
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0120
  article-title: Cloud detection for satellite imagery using attention-based U-net convolutional neural network
  publication-title: Symmetry
  doi: 10.3390/sym12061056
– volume: 11
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0045
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information (Switzerland)
– volume: 11
  issue: 19
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0090
  article-title: CloudFCN: Accurate and robust cloud detection for satellite imagery with deep learning
  publication-title: Remote Sensing
  doi: 10.3390/rs11192312
– ident: 10.1016/j.eswa.2022.118380_b0350
  doi: 10.1109/WACV.2017.58
– ident: 10.1016/j.eswa.2022.118380_b0140
  doi: 10.1117/12.2529586
– volume: 225
  start-page: 307
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0050
  article-title: Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.03.007
– volume: 2019
  start-page: 1965
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0275
  article-title: Cloudmaskgan: A content-aware unpaired image-to-image translation algorithm for remote sensing imagery
  publication-title: IEEE International Conference on Image Processing (ICIP)
– volume: 10
  start-page: 3631
  issue: 8
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0395
  article-title: Multilevel cloud detection in remote sensing images based on deep learning
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2017.2686488
– ident: 10.1016/j.eswa.2022.118380_b0060
– volume: 1029–1032
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0280
  article-title: Cloud-Net: An end-to-end cloud detection algorithm for landsat 8 imagery
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS)
– ident: 10.1016/j.eswa.2022.118380_b0015
– volume: 118
  start-page: 83
  year: 2012
  ident: 10.1016/j.eswa.2022.118380_b0450
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.10.028
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0145
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2913372
– volume: 10
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0265
  article-title: Multitemporal cloud masking in the google earth engine
  publication-title: Remote Sensing
  doi: 10.3390/rs10071079
– volume: 132
  start-page: 48
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0430
  article-title: Contextually guided very-high-resolution imagery classification with semantic segments
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2017.08.011
– year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0065
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2699184
– volume: 36
  start-page: 193
  year: 1980
  ident: 10.1016/j.eswa.2022.118380_b0100
  article-title: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 2017
  start-page: 5168
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0245
  article-title: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 57
  start-page: 6195
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0410
  article-title: CDnet: CNN-based cloud detection for remote sensing imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2904868
– volume: 52
  start-page: 5540
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2022.118380_b0420
  article-title: A robust approach for object-based detection and radiometric characterization of cloud shadow using haze optimized transformation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2013.2290237
– ident: 10.1016/j.eswa.2022.118380_b0355
– year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0185
  article-title: Averaging weights leads to wider optima and better generalization
  publication-title: ArXiv Preprint
– volume: 201
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0040
  article-title: Convolutional neural networks applied to semantic segmentation of landslide scars
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105189
– start-page: 2048
  year: 2015
  ident: 10.1016/j.eswa.2022.118380_b0400
– ident: 10.1016/j.eswa.2022.118380_b0110
– volume: 8
  start-page: 25111
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0085
  article-title: Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970836
– ident: 10.1016/j.eswa.2022.118380_b0270
  doi: 10.1109/3DV.2016.79
– ident: 10.1016/j.eswa.2022.118380_b0030
– ident: 10.1016/j.eswa.2022.118380_b0135
– volume: 21
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0130
  article-title: C-UNet: Complement UNet for remote sensing road extraction
  publication-title: Sensors
  doi: 10.3390/s21062153
– year: 2016
  ident: 10.1016/j.eswa.2022.118380_b0125
  article-title: Deep residual learning for image recognition
– year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0105
  article-title: Semantic segmentation of clouds in satellite imagery using deep pre-trained U-nets
  publication-title: Proceedings - Applied Imagery Pattern Recognition Workshop
– volume: 55
  start-page: 4913
  issue: 9
  year: 2017
  ident: 10.1016/j.eswa.2022.118380_b0405
  article-title: A novel Bayesian spatial-temporal random field model applied to cloud detection from remotely sensed imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2017.2692264
– volume: 7
  start-page: 164650
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0335
  article-title: A survey of deep learning techniques: Application in wind and solar energy resources
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2951750
– ident: 10.1016/j.eswa.2022.118380_b0170
– volume: 89
  year: 2020
  ident: 10.1016/j.eswa.2022.118380_b0025
  article-title: Deep learning-based appearance features extraction for automated carp species identification
  publication-title: Aquacultural Engineering
  doi: 10.1016/j.aquaeng.2020.102053
– year: 2015
  ident: 10.1016/j.eswa.2022.118380_b0295
  article-title: Learning deconvolution network for semantic segmentation
– volume: 15
  start-page: 1420
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.118380_b0005
  article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2021.1974093
– volume: 8
  issue: 9
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0435
  article-title: Using vehicle synthesis generative adversarial networks to improve vehicle detection in remote sensing images
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi8090390
– volume: 10
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0460
  article-title: A cloud detection method for landsat 8 images based on PCANet
  publication-title: Remote Sensing
  doi: 10.3390/rs10060877
– start-page: 1097
  year: 2012
  ident: 10.1016/j.eswa.2022.118380_b0225
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.eswa.2022.118380_b0380
  doi: 10.1109/CVPRW50498.2020.00203
– start-page: 232
  year: 2008
  ident: 10.1016/j.eswa.2022.118380_b0095
  article-title: A threshold selection method from gray-level histograms
– volume: 229
  start-page: 247
  issue: August
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0200
  article-title: A cloud detection algorithm for satellite imagery based on deep learning Remote Sensing of Environment A cloud detection algorithm for satellite imagery based on deep learning
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.03.039
– year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0385
  article-title: CBAM: Convolutional block attention module
– volume: 11
  issue: 15
  year: 2019
  ident: 10.1016/j.eswa.2022.118380_b0415
  article-title: Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network
  publication-title: Remote Sensing
  doi: 10.3390/rs11151774
– volume: 10
  issue: 10
  year: 2018
  ident: 10.1016/j.eswa.2022.118380_b0020
  article-title: Towards operational satellite-based damage-mapping using U-net convolutional network: A case study of 2011 Tohoku Earthquake-Tsunami
  publication-title: Remote Sensing
  doi: 10.3390/rs10101626
– ident: 10.1016/j.eswa.2022.118380_b0195
  doi: 10.1109/CIBCB48159.2020.9277638
– ident: 10.1016/j.eswa.2022.118380_b0075
– ident: 10.1016/j.eswa.2022.118380_b0220
SSID ssj0017007
Score 2.52826
Snippet •Proposed U-Net++ based network with attention mechanism for cloud segmentation.•Proposed SEUNet++ achieves an IoU score of 91.8 %.•Transfer learning helps to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118380
SubjectTerms 95-Cloud
Cloud segmentation
Multispectral satellite data
ResNet
Semantic segmentation
U-Net
Title Semantic segmentation of clouds in satellite images based on U-Net++ architecture and attention mechanism
URI https://dx.doi.org/10.1016/j.eswa.2022.118380
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcj3UNf9tmxdh_oYW9GJZFsS37sRsc2RhgkG3kzsiINh8YJsbP1z9_JZ7mmHaUdDIJJjGWFux-nk-5-d4S807GR4MYaNtbWsNilmmmZcGYLreOxE1a1DO8fX-V0qhaLLER067adgKwqdXmZbf-rquEeKNtTZ--h7v6lcAO-g9LhCmqH650UP7NrkFZpotr-XHfMotYnNBebPaa_1rqtw9nYqFxrX-TBr2VLHzf4zqY-OvEePtGNGIMvxYnJkWvrCcOh-uCqT-ezu6arDR1Yc4P4eG_b9X4X-QbZmNv9zYfFt7rP9Jhp_27kEVWbVdQmgQ8PJ3jbJwXpmXhiFlgzVylKePQoWTzB7jynFg2vkoKlErslBsvM28oJN608HjisTm3925eO4hwMvxLYEepa9eyZn8zPxbnfDApYrQ-4TDI1Igdnn88XX_qQkxwjtz78uY5hhcmA12f6uxcz8EzmT8ijbktBzxAKT8kDWz0jj0O7DtpZ7-ekDMigQ2TQjaOIDFpWtEcGRWTQFhkUHmuREUV0iAoKqKA9KmiPiiMy_3g-__CJdZ02mAGXr2HCJpYLwWH1k2oCP5Lx0i2d4xMHHmtcZEUq01TKQiltiji1ojAGNptFmjiTOfGCjKpNZV8SKjIrMxNrk2gZW-2UA5dSy0IUIk1tvDwmkyC43HRV6H0zlIs8pBuuci_s3As7R2Efk6gfs8UaLLc-nQR95J0Xid5hDvC5ZdzJP457RQ6vkP-ajJrd3r4hD82vpqx3bzuU_QEn2Jqj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+segmentation+of+clouds+in+satellite+images+based+on+U-Net%2B%2B+architecture+and+attention+mechanism&rft.jtitle=Expert+systems+with+applications&rft.au=Kaur+Buttar%2C+Preetpal&rft.au=Sachan%2C+Manoj+Kumar&rft.date=2022-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=209&rft_id=info:doi/10.1016%2Fj.eswa.2022.118380&rft.externalDocID=S0957417422014932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon