Generalised Local Fractional Hermite-Hadamard Type Inequalities on Fractal Sets
Fractal geometry and analysis constitute a growing field, with numerous applications, based on the principles of fractional calculus. Fractals sets are highly effective in improving convex inequalities and their generalisations. In this paper, we establish a generalised notion of convexity. By defin...
Uloženo v:
| Vydáno v: | Pan-American journal of mathematics Ročník 3; s. 16 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Mathyze Publishers
12.07.2024
|
| ISSN: | 2832-4293, 2832-4293 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Fractal geometry and analysis constitute a growing field, with numerous applications, based on the principles of fractional calculus. Fractals sets are highly effective in improving convex inequalities and their generalisations. In this paper, we establish a generalised notion of convexity. By defining generalised φh-s convex functions, we extend the well known concepts of generalised convex functions, P-functions, Breckner s-convex functions, h-convex functions amongst others. With this definition, we prove Hermite-Hadamard type inequalities for generalised φh-s convex mappings onto fractal sets. Our results are then applied to probability theory. |
|---|---|
| ISSN: | 2832-4293 2832-4293 |
| DOI: | 10.28919/cpr-pajm/3-16 |