Digital financial risk assessment method based on machine learning algorithm

In order to explore more accurate and efficient means of digital financial risk assessment, this paper compares and analyzes the performance of different machine learning algorithms in digital financial risk assessment to find the optimal model configuration, so as to improve the accuracy and timeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 262; S. 1094 - 1100
Hauptverfasser: Jin, Jing, Ma, Yusong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2025
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In order to explore more accurate and efficient means of digital financial risk assessment, this paper compares and analyzes the performance of different machine learning algorithms in digital financial risk assessment to find the optimal model configuration, so as to improve the accuracy and timeliness of risk assessment. This paper firstly reviews the relevant literature systematically, and sorts out the current research progress in the field of digital financial risk assessment. Subsequently, the source of data collection and pre-processing steps are introduced in detail to ensure the quality and availability of data. In the feature engineering stage, through the in-depth mining and conversion of the original data, the feature variables that have a key impact on the digital financial risk assessment are extracted, a variety of mainstream algorithms are compared, and the model parameters are optimized by cross-validation and other methods. Experimental results show that the selected algorithm has good predictive performance on specific data sets, and support vector machine (SVM) and random forest algorithm are particularly outstanding on multiple evaluation indicators.
AbstractList In order to explore more accurate and efficient means of digital financial risk assessment, this paper compares and analyzes the performance of different machine learning algorithms in digital financial risk assessment to find the optimal model configuration, so as to improve the accuracy and timeliness of risk assessment. This paper firstly reviews the relevant literature systematically, and sorts out the current research progress in the field of digital financial risk assessment. Subsequently, the source of data collection and pre-processing steps are introduced in detail to ensure the quality and availability of data. In the feature engineering stage, through the in-depth mining and conversion of the original data, the feature variables that have a key impact on the digital financial risk assessment are extracted, a variety of mainstream algorithms are compared, and the model parameters are optimized by cross-validation and other methods. Experimental results show that the selected algorithm has good predictive performance on specific data sets, and support vector machine (SVM) and random forest algorithm are particularly outstanding on multiple evaluation indicators.
Author Jin, Jing
Ma, Yusong
Author_xml – sequence: 1
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
– sequence: 2
  givenname: Yusong
  surname: Ma
  fullname: Ma, Yusong
  email: nkmys@126.com
BookMark eNp9kLtOAzEQRS0UJELIF9D4B3axvfGroEDhKUWigdry2rOJw64d2Ssk_p4NoaBimrm3OKPRuUSzmCIgdE1JTQkVN_v6kJMrNSOM14TXdCXO0JwqKSvCiZ79yRdoWcqeTNMopamco8192IbR9rgL0UYXppRD-cC2FChlgDjiAcZd8ri1BTxOEQ_W7UIE3IPNMcQttv025TDuhit03tm-wPJ3L9D748Pb-rnavD69rO82lWOUiwqEALIimlpFWk_ZqgXJ7NS0bzvZUEq576wU3lrNVKMkUUJzzaSUXUuobxaoOd11OZWSoTOHHAabvwwl5ujE7M2PE3N0Ygg3k5OJuj1RML32GSCb4gJEBz5kcKPxKfzLfwMVxW1i
Cites_doi 10.18280/ijsse.140309
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.05.146
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1100
ExternalDocumentID 10_1016_j_procs_2025_05_146
S1877050925019933
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c2156-e66e04091a80bd124be72a1a89dbf731115dfa76daa9283870869592777fb01d3
ISSN 1877-0509
IngestDate Sat Nov 29 07:27:37 EST 2025
Sun Oct 19 01:39:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Risk assessment
Digital finance
Machine learning algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2156-e66e04091a80bd124be72a1a89dbf731115dfa76daa9283870869592777fb01d3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.05.146
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_procs_2025_05_146
elsevier_sciencedirect_doi_10_1016_j_procs_2025_05_146
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sixin, Bingxin, Hesi (bib9) 2023; 9
Zihui, Pingmiao, Shihan (bib3) 2024; 1
Ben-Yan, Yu-jie (bib6) 2023; 3
Hanbing, Zhixin, Yinan (bib8) 2024; 26
Fei, Lei, Weibing (bib4) 2024; 7
Petrina O, Stadolin M, Kozhina V, et al. Bank Financial Risk Assessment in the Digital Background[J].International Journal of Safety & Security Engineering, 2024, 14(3).
Yong (bib2) 2023; 10
Zhang Yuji, Wang Fengxiao. Based on neural network of xinjiang financial risk prediction. Journal of border economy and culture, 2023 (5):31-36.
Zijun (bib1) 2023; 3
Da, Yingxue (bib7) 2023; 7
Jiawei (bib10) 2023; 24
Fei (10.1016/j.procs.2025.05.146_bib4) 2024; 7
Jiawei (10.1016/j.procs.2025.05.146_bib10) 2023; 24
10.1016/j.procs.2025.05.146_bib11
10.1016/j.procs.2025.05.146_bib5
Sixin (10.1016/j.procs.2025.05.146_bib9) 2023; 9
Zijun (10.1016/j.procs.2025.05.146_bib1) 2023; 3
Da (10.1016/j.procs.2025.05.146_bib7) 2023; 7
Yong (10.1016/j.procs.2025.05.146_bib2) 2023; 10
Ben-Yan (10.1016/j.procs.2025.05.146_bib6) 2023; 3
Zihui (10.1016/j.procs.2025.05.146_bib3) 2024; 1
Hanbing (10.1016/j.procs.2025.05.146_bib8) 2024; 26
References_xml – volume: 1
  start-page: 131
  year: 2024
  end-page: 149
  ident: bib3
  article-title: Research on Risk linkage and Prediction of Stock Market and Bond Market: Based on the frontier perspective of Machine Learning
  publication-title: Journal of Financial Research
– volume: 24
  start-page: 24
  year: 2023
  end-page: 26
  ident: bib10
  article-title: Research on Construction of risk assessment index system of Supply chain finance in Construction Industry
  publication-title: Journal of Finance and Economics
– volume: 7
  start-page: 0134
  year: 2024
  end-page: 0136
  ident: bib4
  article-title: Research on payment risk prevention and control of commercial banks based on Machine learning algorithm
  publication-title: Information Industry Report
– reference: Petrina O, Stadolin M, Kozhina V, et al. Bank Financial Risk Assessment in the Digital Background[J].International Journal of Safety & Security Engineering, 2024, 14(3).
– volume: 10
  start-page: 44
  year: 2023
  end-page: 61
  ident: bib2
  article-title: Research on Measurement and Influencing Factors of China’s systemic financial risk based on Machine Learning
  publication-title: Financial Development Review
– volume: 9
  start-page: 83
  year: 2023
  end-page: 94
  ident: bib9
  article-title: Risk assessment and strategic prevention and control of Internet logistics Finance based on Cloud model in Uka era: from the perspective of small and medium-sized logistics enterprises
  publication-title: Price Monthly
– volume: 7
  start-page: 48
  year: 2023
  end-page: 58
  ident: bib7
  article-title: Can machine learning methods identify the probability of systemic financial risk in China?
  publication-title: Financial Market Research
– reference: Zhang Yuji, Wang Fengxiao. Based on neural network of xinjiang financial risk prediction. Journal of border economy and culture, 2023 (5):31-36.
– volume: 3
  start-page: 17
  year: 2023
  end-page: 27
  ident: bib6
  article-title: Study on credit breach risk evaluation of Listed companies based on SMOTE LR model
  publication-title: Developmental Finance Research
– volume: 26
  start-page: 196
  year: 2024
  end-page: 206
  ident: bib8
  article-title: Research on financial risk monitoring and early warning system under the background of digital transformation
  publication-title: Engineering Science
– volume: 3
  start-page: 68
  year: 2023
  end-page: 71
  ident: bib1
  article-title: Application of Machine Learning Algorithm in financial market risk analysis and prediction
  publication-title: North and south bridge
– volume: 1
  start-page: 131
  year: 2024
  ident: 10.1016/j.procs.2025.05.146_bib3
  article-title: Research on Risk linkage and Prediction of Stock Market and Bond Market: Based on the frontier perspective of Machine Learning
  publication-title: Journal of Financial Research
– volume: 7
  start-page: 48
  year: 2023
  ident: 10.1016/j.procs.2025.05.146_bib7
  article-title: Can machine learning methods identify the probability of systemic financial risk in China?
  publication-title: Financial Market Research
– volume: 3
  start-page: 17
  year: 2023
  ident: 10.1016/j.procs.2025.05.146_bib6
  article-title: Study on credit breach risk evaluation of Listed companies based on SMOTE LR model
  publication-title: Developmental Finance Research
– volume: 26
  start-page: 196
  issue: 3
  year: 2024
  ident: 10.1016/j.procs.2025.05.146_bib8
  article-title: Research on financial risk monitoring and early warning system under the background of digital transformation
  publication-title: Engineering Science
– ident: 10.1016/j.procs.2025.05.146_bib11
  doi: 10.18280/ijsse.140309
– volume: 10
  start-page: 44
  year: 2023
  ident: 10.1016/j.procs.2025.05.146_bib2
  article-title: Research on Measurement and Influencing Factors of China’s systemic financial risk based on Machine Learning
  publication-title: Financial Development Review
– ident: 10.1016/j.procs.2025.05.146_bib5
– volume: 7
  start-page: 0134
  year: 2024
  ident: 10.1016/j.procs.2025.05.146_bib4
  article-title: Research on payment risk prevention and control of commercial banks based on Machine learning algorithm
  publication-title: Information Industry Report
– volume: 9
  start-page: 83
  year: 2023
  ident: 10.1016/j.procs.2025.05.146_bib9
  article-title: Risk assessment and strategic prevention and control of Internet logistics Finance based on Cloud model in Uka era: from the perspective of small and medium-sized logistics enterprises
  publication-title: Price Monthly
– volume: 3
  start-page: 68
  year: 2023
  ident: 10.1016/j.procs.2025.05.146_bib1
  article-title: Application of Machine Learning Algorithm in financial market risk analysis and prediction
  publication-title: North and south bridge
– volume: 24
  start-page: 24
  year: 2023
  ident: 10.1016/j.procs.2025.05.146_bib10
  article-title: Research on Construction of risk assessment index system of Supply chain finance in Construction Industry
  publication-title: Journal of Finance and Economics
SSID ssj0000388917
Score 2.3427696
Snippet In order to explore more accurate and efficient means of digital financial risk assessment, this paper compares and analyzes the performance of different...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1094
SubjectTerms Digital finance
Machine learning algorithm
Risk assessment
Title Digital financial risk assessment method based on machine learning algorithm
URI https://dx.doi.org/10.1016/j.procs.2025.05.146
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4oevDi24iv7MEbNqGF7naPxkc8IPGAhluz7W4RIsXwMJz87c6-CiohcvDQhm5ggc7HzOww-30IXfoZiWpweDxNiFcnQnpRyIknIRsXmYBDq0S8NGizGbXb7MkSKoy0nADN82g6Ze__amoYA2OrrbMrmLuYFAbgMRgdzmB2OP_J8LfdjhICqWQFl4ZuH-cFBadVja6oACbUnwV93VApnYJEp8LfOoNhd_zan09d9ZYCQJPuQldCEBUbPYsmHCvs5YKhrnNrFz-BpL4zX18wu5CtM4wo9RQ_jIkVC8asBw2sQzU-0K8a2WIbTxUn3UJfbcoGPRUpUkWcHoSKQ9VVJL8xY_-IWEUfoWtR68V6klhNEldDtZ5ZRxsBDZnq8nv8nJXdFPkN0zrMxTdxXFS66-_Xh1mcr8zlIK1dtG0XD_jaGH0Prcl8H-04YQ5s_fQBalgM4AIDWGEAzzCADQawxgAe5NhiADsM4AIDh-j5_q518-BZ2QwvhfwNfmaESHDNzOdRNRGQvyWSBhyumEgyWoPgFoqMUyI4Z5BcgsOOCAtZQCnNkqovakeolA9yeYwwqbPEF5ymKfPraRryUPCIwNP9hMA6QZbRlbs5YAHNjhIvsUkZEXcDYwtRk7jFgIllLzxZ7X1O0Za6MpWyM1QaDyfyHG2mH-PuaHihAfEFak1zJw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+financial+risk+assessment+method+based+on+machine+learning+algorithm&rft.jtitle=Procedia+computer+science&rft.au=Jin%2C+Jing&rft.au=Ma%2C+Yusong&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=262&rft.spage=1094&rft.epage=1100&rft_id=info:doi/10.1016%2Fj.procs.2025.05.146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_05_146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon