Analysis on Safety Performance Improvement of Smart Metering System Based on Big data

This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems, such as data tampering, network attacks, and delayed anomaly detection, especially the problems of insufficient encryption algorithm strength,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 262; s. 909 - 918
Hlavní autoři: Ji, Xiaoli, Li, Tingting
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2025
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems, such as data tampering, network attacks, and delayed anomaly detection, especially the problems of insufficient encryption algorithm strength, access control vulnerabilities, and low real-time response efficiency. The research method includes four technical levels: First, based on the Hadoop+Spark architecture, real-time collection and cleaning of millions of data per second are achieved. Secondly, the improved random forest algorithm (the feature selection dimension is expanded to 32 items) is used for millisecond-level anomaly detection. Then, the LSTM time series prediction model (the number of hidden layer nodes is 128) is used to warn of potential attacks 15 minutes in advance. Finally, the blockchain smart contract is combined to complete the dynamic verification of permissions (the transaction processing speed is increased to 1500TPS). After actual testing in industrial scenarios, the accuracy of system anomaly recognition has increased to 98.4%, the response delay has been compressed to 1.1 seconds, the attack prediction accuracy has reached 92.3%, and the defense mechanism has successfully blocked 94.6% of SQL injections and DDoS attacks. Research shows that this multimodal fusion solution effectively solves the defects of passive defense of traditional metering systems and provides a verifiable technical paradigm for the security protection of critical infrastructure.
AbstractList This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems, such as data tampering, network attacks, and delayed anomaly detection, especially the problems of insufficient encryption algorithm strength, access control vulnerabilities, and low real-time response efficiency. The research method includes four technical levels: First, based on the Hadoop+Spark architecture, real-time collection and cleaning of millions of data per second are achieved. Secondly, the improved random forest algorithm (the feature selection dimension is expanded to 32 items) is used for millisecond-level anomaly detection. Then, the LSTM time series prediction model (the number of hidden layer nodes is 128) is used to warn of potential attacks 15 minutes in advance. Finally, the blockchain smart contract is combined to complete the dynamic verification of permissions (the transaction processing speed is increased to 1500TPS). After actual testing in industrial scenarios, the accuracy of system anomaly recognition has increased to 98.4%, the response delay has been compressed to 1.1 seconds, the attack prediction accuracy has reached 92.3%, and the defense mechanism has successfully blocked 94.6% of SQL injections and DDoS attacks. Research shows that this multimodal fusion solution effectively solves the defects of passive defense of traditional metering systems and provides a verifiable technical paradigm for the security protection of critical infrastructure.
Author Ji, Xiaoli
Li, Tingting
Author_xml – sequence: 1
  givenname: Xiaoli
  surname: Ji
  fullname: Ji, Xiaoli
  email: yatou6157@163.com
– sequence: 2
  givenname: Tingting
  surname: Li
  fullname: Li, Tingting
BookMark eNp9kMFqwzAQREVJoWmaL-hFP2B3JVm2c-ghCW0aSGkhzVnI1iooxHaQTMB_X6XpoafuZReWGWbePRm1XYuEPDJIGbD86ZCefFeHlAOXKciUcXlDxqwsigQkzEZ_7jsyDeEAcURZzlgxJrt5q49DcIF2Ld1qi_1AP9Hbzje6rZGum2h-xgbbnnaWbhvte_qOPXrX7ul2CD02dKEDmovBwu2p0b1-ILdWHwNOf_eE7F5fvpZvyeZjtV7ON0nNmZSJLYSsMpCG8QzLMmdGWgmYc8PB6Ap4BpUwFg2ISkAGXNi8EpybQseXMGJCxNW39l0IHq06eRcjDoqBusBRB_UDR13gKJAqwomq56sKY7SzQ69C7TC2Nc5j3SvTuX_136C1b6k
Cites_doi 10.1016/j.jfineco.2021.10.006
10.1080/00207543.2020.1868599
10.1109/JAS.2020.1003384
10.1016/j.molp.2023.09.010
10.1137/18M1209854
10.1109/TNNLS.2019.2957109
10.1109/JIOT.2020.2998584
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.05.125
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 918
ExternalDocumentID 10_1016_j_procs_2025_05_125
S1877050925019726
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c2155-f735b405d124e8861d5f50e62d20dab0240b3dfed03b304023f6b322d7a2403d3
ISSN 1877-0509
IngestDate Sat Nov 29 07:30:19 EST 2025
Sun Oct 19 01:39:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metering System Safety Performance
Big Data
Hadoop+Spark
LSTM
Blockchain
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2155-f735b405d124e8861d5f50e62d20dab0240b3dfed03b304023f6b322d7a2403d3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.05.125
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_05_125
elsevier_sciencedirect_doi_10_1016_j_procs_2025_05_125
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yongmin, Shengnan, Ling, Jiyuan (bib3) 2024; 53
Wang, Yang, Wang (bib7) 2020; 21
Yan, Xiaoying, Kang, Yanhao, Hongliang (bib1) 2024; 22
Liu, Ong, Shen (bib9) 2020; 31
Jie, Zhijing (bib5) 2024; 41
Misra, Dixit, Al-Mallahi (bib8) 2020; 9
Talwar, Kaur, Fosso Wamba (bib12) 2021; 59
Imran, Mahmood, Morshed (bib14) 2020; 8
Bian Xu. Application of big data analysis in the informatization construction of enterprise measurement system [J]. Information Recording Materials, 2024, 25(7): 113-115+118.
Yang, Li, Liu (bib6) 2020; 13
Chen, Wu, Li (bib11) 2023; 16
Feldman, Schmidt, Sohler (bib13) 2020; 49
Martin, Nagel (bib10) 2022; 145
Jing, Bing, Jianhong, Zhiqiang (bib2) 2024; 53
Feldman (10.1016/j.procs.2025.05.125_bib13) 2020; 49
Martin (10.1016/j.procs.2025.05.125_bib10) 2022; 145
Talwar (10.1016/j.procs.2025.05.125_bib12) 2021; 59
Yongmin (10.1016/j.procs.2025.05.125_bib3) 2024; 53
10.1016/j.procs.2025.05.125_bib4
Liu (10.1016/j.procs.2025.05.125_bib9) 2020; 31
Imran (10.1016/j.procs.2025.05.125_bib14) 2020; 8
Yang (10.1016/j.procs.2025.05.125_bib6) 2020; 13
Misra (10.1016/j.procs.2025.05.125_bib8) 2020; 9
Chen (10.1016/j.procs.2025.05.125_bib11) 2023; 16
Jie (10.1016/j.procs.2025.05.125_bib5) 2024; 41
Yan (10.1016/j.procs.2025.05.125_bib1) 2024; 22
Wang (10.1016/j.procs.2025.05.125_bib7) 2020; 21
Jing (10.1016/j.procs.2025.05.125_bib2) 2024; 53
References_xml – volume: 13
  start-page: 57
  year: 2020
  end-page: 69
  ident: bib6
  article-title: Brief introduction of medical database and data mining technology in big data era[J]
  publication-title: Journal of Evidence‐Based Medicine
– volume: 145
  start-page: 154
  year: 2022
  end-page: 177
  ident: bib10
  article-title: Market efficiency in the age of big data[J]
  publication-title: Journal of financial economics
– volume: 59
  start-page: 3509
  year: 2021
  end-page: 3534
  ident: bib12
  article-title: Big Data in operations and supply chain management: a systematic literature review and future research agenda[J]
  publication-title: International journal of production research
– volume: 21
  start-page: 393
  year: 2020
  end-page: 405
  ident: bib7
  article-title: Big data service architecture: a survey[J]
  publication-title: Journal of Internet Technology
– volume: 16
  start-page: 1733
  year: 2023
  end-page: 1742
  ident: bib11
  article-title: TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining[J]
  publication-title: Molecular plant
– reference: Bian Xu. Application of big data analysis in the informatization construction of enterprise measurement system [J]. Information Recording Materials, 2024, 25(7): 113-115+118.
– volume: 22
  start-page: 1
  year: 2024
  end-page: 5
  ident: bib1
  article-title: Design of an intelligent unattended metering system [J]
  publication-title: Industrial Technology and Vocational Education
– volume: 49
  start-page: 601
  year: 2020
  end-page: 657
  ident: bib13
  article-title: Turning big data into tiny data: Constant-size coresets for k-means, pca, and projective clustering[J]
  publication-title: SIAM Journal on Computing
– volume: 53
  start-page: 214
  year: 2024
  end-page: 216
  ident: bib2
  article-title: Design and test research of LNG ship metering system [J]
  publication-title: Shandong Chemical Industry
– volume: 8
  start-page: 1
  year: 2020
  end-page: 22
  ident: bib14
  article-title: Big data analytics in healthcare− A systematic literature review and roadmap for practical implementation[J]
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 31
  start-page: 4405
  year: 2020
  end-page: 4423
  ident: bib9
  article-title: When Gaussian process meets big data: A review of scalable GPs[J]
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 53
  start-page: 129
  year: 2024
  end-page: 132
  ident: bib3
  article-title: Power metering system based on filtering to avoid power theft Behavior dynamic identification method [J]
  publication-title: Mechanical Design and Manufacturing Engineering
– volume: 9
  start-page: 6305
  year: 2020
  end-page: 6324
  ident: bib8
  article-title: IoT, big data, and artificial intelligence in agriculture and food industry[J]
  publication-title: IEEE Internet of things Journal
– volume: 41
  start-page: 232
  year: 2024
  end-page: 233
  ident: bib5
  article-title: Optimization analysis of power marketing measurement system based on big data technology [J]
  publication-title: Integrated Circuit Application
– volume: 145
  start-page: 154
  issue: 1
  year: 2022
  ident: 10.1016/j.procs.2025.05.125_bib10
  article-title: Market efficiency in the age of big data[J]
  publication-title: Journal of financial economics
  doi: 10.1016/j.jfineco.2021.10.006
– volume: 59
  start-page: 3509
  issue: 11
  year: 2021
  ident: 10.1016/j.procs.2025.05.125_bib12
  article-title: Big Data in operations and supply chain management: a systematic literature review and future research agenda[J]
  publication-title: International journal of production research
  doi: 10.1080/00207543.2020.1868599
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.procs.2025.05.125_bib14
  article-title: Big data analytics in healthcare− A systematic literature review and roadmap for practical implementation[J]
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2020.1003384
– volume: 21
  start-page: 393
  issue: 2
  year: 2020
  ident: 10.1016/j.procs.2025.05.125_bib7
  article-title: Big data service architecture: a survey[J]
  publication-title: Journal of Internet Technology
– volume: 22
  start-page: 1
  issue: 5
  year: 2024
  ident: 10.1016/j.procs.2025.05.125_bib1
  article-title: Design of an intelligent unattended metering system [J]
  publication-title: Industrial Technology and Vocational Education
– ident: 10.1016/j.procs.2025.05.125_bib4
– volume: 41
  start-page: 232
  issue: 2
  year: 2024
  ident: 10.1016/j.procs.2025.05.125_bib5
  article-title: Optimization analysis of power marketing measurement system based on big data technology [J]
  publication-title: Integrated Circuit Application
– volume: 13
  start-page: 57
  issue: 1
  year: 2020
  ident: 10.1016/j.procs.2025.05.125_bib6
  article-title: Brief introduction of medical database and data mining technology in big data era[J]
  publication-title: Journal of Evidence‐Based Medicine
– volume: 16
  start-page: 1733
  issue: 11
  year: 2023
  ident: 10.1016/j.procs.2025.05.125_bib11
  article-title: TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining[J]
  publication-title: Molecular plant
  doi: 10.1016/j.molp.2023.09.010
– volume: 49
  start-page: 601
  issue: 3
  year: 2020
  ident: 10.1016/j.procs.2025.05.125_bib13
  article-title: Turning big data into tiny data: Constant-size coresets for k-means, pca, and projective clustering[J]
  publication-title: SIAM Journal on Computing
  doi: 10.1137/18M1209854
– volume: 53
  start-page: 214
  issue: 20
  year: 2024
  ident: 10.1016/j.procs.2025.05.125_bib2
  article-title: Design and test research of LNG ship metering system [J]
  publication-title: Shandong Chemical Industry
– volume: 53
  start-page: 129
  issue: 3
  year: 2024
  ident: 10.1016/j.procs.2025.05.125_bib3
  article-title: Power metering system based on filtering to avoid power theft Behavior dynamic identification method [J]
  publication-title: Mechanical Design and Manufacturing Engineering
– volume: 31
  start-page: 4405
  issue: 11
  year: 2020
  ident: 10.1016/j.procs.2025.05.125_bib9
  article-title: When Gaussian process meets big data: A review of scalable GPs[J]
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2019.2957109
– volume: 9
  start-page: 6305
  issue: 9
  year: 2020
  ident: 10.1016/j.procs.2025.05.125_bib8
  article-title: IoT, big data, and artificial intelligence in agriculture and food industry[J]
  publication-title: IEEE Internet of things Journal
  doi: 10.1109/JIOT.2020.2998584
SSID ssj0000388917
Score 2.34257
Snippet This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 909
SubjectTerms Big Data
Blockchain
Hadoop+Spark
LSTM
Metering System Safety Performance
Title Analysis on Safety Performance Improvement of Smart Metering System Based on Big data
URI https://dx.doi.org/10.1016/j.procs.2025.05.125
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF58Hbz4FuuLPXirgWbTzSZHFcWDiqBCbyGb3ZSIptJW8eRvd2YfsT4oevASmoVM2szXmcnwzbeEHHDBIKvnRaB5EQddrqMgKbssSEXIE1kUkHOMzuyFuLpKer302vHnR2Y7AVHXyetr-vSvroY1cDaOzv7B3Y1RWIDP4HQ4gtvh-CvHf8iMwD83L5GSeT0xHWC7CNpzAG4ewUT7EkkxRpvbCDu3jyG3KTRwXPXbbnytqWHNbAHAytDRcUeItkujDRvHMAR6VT54qBrCT2WRUffHPlm6XoOdSHaBMREiQK0Ymzd-WHPRlLngauNh6i-wZzbUfovatoFwjzmjQAl1xlFNNXT3_6SR_SV3NYxCT1a7z4yRDI1kHZ6BkVkyzwS8NyGv8-2jAYcyOKnZkbn5HV6VyvD_vn2ZnyuXiWrkdoUsudcIemTdv0pmdL1Glv0WHdRF7HVy59FABzW1aKATaKATaKCDkho0UI8GatFADRrQAKCBIho2yN3Z6e3JeeB20ggKKOl4UIqISyjNFVRzOkniUPGSd3TMFOuoXKLOnYxUqVUnkhGEdRaVsYRQr0SOeo0q2iRz9aDWW4TGqFgVK8F0GndlLqDcU5AXpJBhFLKibJFD_5TAFUYwJZvinBaJ_ZPMHFhtLZcBOKZduP23--yQRTyzzbNdMjcePus9slC8jKvRcN8g4x2EX3cv
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+on+Safety+Performance+Improvement+of+Smart+Metering+System+Based+on+Big+data&rft.jtitle=Procedia+computer+science&rft.au=Ji%2C+Xiaoli&rft.au=Li%2C+Tingting&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=262&rft.spage=909&rft.epage=918&rft_id=info:doi/10.1016%2Fj.procs.2025.05.125&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_05_125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon