Analysis on Safety Performance Improvement of Smart Metering System Based on Big data
This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems, such as data tampering, network attacks, and delayed anomaly detection, especially the problems of insufficient encryption algorithm strength,...
Uloženo v:
| Vydáno v: | Procedia computer science Ročník 262; s. 909 - 918 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
2025
|
| Témata: | |
| ISSN: | 1877-0509, 1877-0509 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems, such as data tampering, network attacks, and delayed anomaly detection, especially the problems of insufficient encryption algorithm strength, access control vulnerabilities, and low real-time response efficiency. The research method includes four technical levels: First, based on the Hadoop+Spark architecture, real-time collection and cleaning of millions of data per second are achieved. Secondly, the improved random forest algorithm (the feature selection dimension is expanded to 32 items) is used for millisecond-level anomaly detection. Then, the LSTM time series prediction model (the number of hidden layer nodes is 128) is used to warn of potential attacks 15 minutes in advance. Finally, the blockchain smart contract is combined to complete the dynamic verification of permissions (the transaction processing speed is increased to 1500TPS). After actual testing in industrial scenarios, the accuracy of system anomaly recognition has increased to 98.4%, the response delay has been compressed to 1.1 seconds, the attack prediction accuracy has reached 92.3%, and the defense mechanism has successfully blocked 94.6% of SQL injections and DDoS attacks. Research shows that this multimodal fusion solution effectively solves the defects of passive defense of traditional metering systems and provides a verifiable technical paradigm for the security protection of critical infrastructure. |
|---|---|
| AbstractList | This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems, such as data tampering, network attacks, and delayed anomaly detection, especially the problems of insufficient encryption algorithm strength, access control vulnerabilities, and low real-time response efficiency. The research method includes four technical levels: First, based on the Hadoop+Spark architecture, real-time collection and cleaning of millions of data per second are achieved. Secondly, the improved random forest algorithm (the feature selection dimension is expanded to 32 items) is used for millisecond-level anomaly detection. Then, the LSTM time series prediction model (the number of hidden layer nodes is 128) is used to warn of potential attacks 15 minutes in advance. Finally, the blockchain smart contract is combined to complete the dynamic verification of permissions (the transaction processing speed is increased to 1500TPS). After actual testing in industrial scenarios, the accuracy of system anomaly recognition has increased to 98.4%, the response delay has been compressed to 1.1 seconds, the attack prediction accuracy has reached 92.3%, and the defense mechanism has successfully blocked 94.6% of SQL injections and DDoS attacks. Research shows that this multimodal fusion solution effectively solves the defects of passive defense of traditional metering systems and provides a verifiable technical paradigm for the security protection of critical infrastructure. |
| Author | Ji, Xiaoli Li, Tingting |
| Author_xml | – sequence: 1 givenname: Xiaoli surname: Ji fullname: Ji, Xiaoli email: yatou6157@163.com – sequence: 2 givenname: Tingting surname: Li fullname: Li, Tingting |
| BookMark | eNp9kMFqwzAQREVJoWmaL-hFP2B3JVm2c-ghCW0aSGkhzVnI1iooxHaQTMB_X6XpoafuZReWGWbePRm1XYuEPDJIGbD86ZCefFeHlAOXKciUcXlDxqwsigQkzEZ_7jsyDeEAcURZzlgxJrt5q49DcIF2Ld1qi_1AP9Hbzje6rZGum2h-xgbbnnaWbhvte_qOPXrX7ul2CD02dKEDmovBwu2p0b1-ILdWHwNOf_eE7F5fvpZvyeZjtV7ON0nNmZSJLYSsMpCG8QzLMmdGWgmYc8PB6Ap4BpUwFg2ISkAGXNi8EpybQseXMGJCxNW39l0IHq06eRcjDoqBusBRB_UDR13gKJAqwomq56sKY7SzQ69C7TC2Nc5j3SvTuX_136C1b6k |
| Cites_doi | 10.1016/j.jfineco.2021.10.006 10.1080/00207543.2020.1868599 10.1109/JAS.2020.1003384 10.1016/j.molp.2023.09.010 10.1137/18M1209854 10.1109/TNNLS.2019.2957109 10.1109/JIOT.2020.2998584 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procs.2025.05.125 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 918 |
| ExternalDocumentID | 10_1016_j_procs_2025_05_125 S1877050925019726 |
| GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P ROL SES SSZ ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c2155-f735b405d124e8861d5f50e62d20dab0240b3dfed03b304023f6b322d7a2403d3 |
| ISSN | 1877-0509 |
| IngestDate | Sat Nov 29 07:30:19 EST 2025 Sun Oct 19 01:39:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metering System Safety Performance Big Data Hadoop+Spark LSTM Blockchain |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2155-f735b405d124e8861d5f50e62d20dab0240b3dfed03b304023f6b322d7a2403d3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procs.2025.05.125 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_procs_2025_05_125 elsevier_sciencedirect_doi_10_1016_j_procs_2025_05_125 |
| PublicationCentury | 2000 |
| PublicationDate | 2025 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yongmin, Shengnan, Ling, Jiyuan (bib3) 2024; 53 Wang, Yang, Wang (bib7) 2020; 21 Yan, Xiaoying, Kang, Yanhao, Hongliang (bib1) 2024; 22 Liu, Ong, Shen (bib9) 2020; 31 Jie, Zhijing (bib5) 2024; 41 Misra, Dixit, Al-Mallahi (bib8) 2020; 9 Talwar, Kaur, Fosso Wamba (bib12) 2021; 59 Imran, Mahmood, Morshed (bib14) 2020; 8 Bian Xu. Application of big data analysis in the informatization construction of enterprise measurement system [J]. Information Recording Materials, 2024, 25(7): 113-115+118. Yang, Li, Liu (bib6) 2020; 13 Chen, Wu, Li (bib11) 2023; 16 Feldman, Schmidt, Sohler (bib13) 2020; 49 Martin, Nagel (bib10) 2022; 145 Jing, Bing, Jianhong, Zhiqiang (bib2) 2024; 53 Feldman (10.1016/j.procs.2025.05.125_bib13) 2020; 49 Martin (10.1016/j.procs.2025.05.125_bib10) 2022; 145 Talwar (10.1016/j.procs.2025.05.125_bib12) 2021; 59 Yongmin (10.1016/j.procs.2025.05.125_bib3) 2024; 53 10.1016/j.procs.2025.05.125_bib4 Liu (10.1016/j.procs.2025.05.125_bib9) 2020; 31 Imran (10.1016/j.procs.2025.05.125_bib14) 2020; 8 Yang (10.1016/j.procs.2025.05.125_bib6) 2020; 13 Misra (10.1016/j.procs.2025.05.125_bib8) 2020; 9 Chen (10.1016/j.procs.2025.05.125_bib11) 2023; 16 Jie (10.1016/j.procs.2025.05.125_bib5) 2024; 41 Yan (10.1016/j.procs.2025.05.125_bib1) 2024; 22 Wang (10.1016/j.procs.2025.05.125_bib7) 2020; 21 Jing (10.1016/j.procs.2025.05.125_bib2) 2024; 53 |
| References_xml | – volume: 13 start-page: 57 year: 2020 end-page: 69 ident: bib6 article-title: Brief introduction of medical database and data mining technology in big data era[J] publication-title: Journal of Evidence‐Based Medicine – volume: 145 start-page: 154 year: 2022 end-page: 177 ident: bib10 article-title: Market efficiency in the age of big data[J] publication-title: Journal of financial economics – volume: 59 start-page: 3509 year: 2021 end-page: 3534 ident: bib12 article-title: Big Data in operations and supply chain management: a systematic literature review and future research agenda[J] publication-title: International journal of production research – volume: 21 start-page: 393 year: 2020 end-page: 405 ident: bib7 article-title: Big data service architecture: a survey[J] publication-title: Journal of Internet Technology – volume: 16 start-page: 1733 year: 2023 end-page: 1742 ident: bib11 article-title: TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining[J] publication-title: Molecular plant – reference: Bian Xu. Application of big data analysis in the informatization construction of enterprise measurement system [J]. Information Recording Materials, 2024, 25(7): 113-115+118. – volume: 22 start-page: 1 year: 2024 end-page: 5 ident: bib1 article-title: Design of an intelligent unattended metering system [J] publication-title: Industrial Technology and Vocational Education – volume: 49 start-page: 601 year: 2020 end-page: 657 ident: bib13 article-title: Turning big data into tiny data: Constant-size coresets for k-means, pca, and projective clustering[J] publication-title: SIAM Journal on Computing – volume: 53 start-page: 214 year: 2024 end-page: 216 ident: bib2 article-title: Design and test research of LNG ship metering system [J] publication-title: Shandong Chemical Industry – volume: 8 start-page: 1 year: 2020 end-page: 22 ident: bib14 article-title: Big data analytics in healthcare− A systematic literature review and roadmap for practical implementation[J] publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 31 start-page: 4405 year: 2020 end-page: 4423 ident: bib9 article-title: When Gaussian process meets big data: A review of scalable GPs[J] publication-title: IEEE transactions on neural networks and learning systems – volume: 53 start-page: 129 year: 2024 end-page: 132 ident: bib3 article-title: Power metering system based on filtering to avoid power theft Behavior dynamic identification method [J] publication-title: Mechanical Design and Manufacturing Engineering – volume: 9 start-page: 6305 year: 2020 end-page: 6324 ident: bib8 article-title: IoT, big data, and artificial intelligence in agriculture and food industry[J] publication-title: IEEE Internet of things Journal – volume: 41 start-page: 232 year: 2024 end-page: 233 ident: bib5 article-title: Optimization analysis of power marketing measurement system based on big data technology [J] publication-title: Integrated Circuit Application – volume: 145 start-page: 154 issue: 1 year: 2022 ident: 10.1016/j.procs.2025.05.125_bib10 article-title: Market efficiency in the age of big data[J] publication-title: Journal of financial economics doi: 10.1016/j.jfineco.2021.10.006 – volume: 59 start-page: 3509 issue: 11 year: 2021 ident: 10.1016/j.procs.2025.05.125_bib12 article-title: Big Data in operations and supply chain management: a systematic literature review and future research agenda[J] publication-title: International journal of production research doi: 10.1080/00207543.2020.1868599 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.procs.2025.05.125_bib14 article-title: Big data analytics in healthcare− A systematic literature review and roadmap for practical implementation[J] publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2020.1003384 – volume: 21 start-page: 393 issue: 2 year: 2020 ident: 10.1016/j.procs.2025.05.125_bib7 article-title: Big data service architecture: a survey[J] publication-title: Journal of Internet Technology – volume: 22 start-page: 1 issue: 5 year: 2024 ident: 10.1016/j.procs.2025.05.125_bib1 article-title: Design of an intelligent unattended metering system [J] publication-title: Industrial Technology and Vocational Education – ident: 10.1016/j.procs.2025.05.125_bib4 – volume: 41 start-page: 232 issue: 2 year: 2024 ident: 10.1016/j.procs.2025.05.125_bib5 article-title: Optimization analysis of power marketing measurement system based on big data technology [J] publication-title: Integrated Circuit Application – volume: 13 start-page: 57 issue: 1 year: 2020 ident: 10.1016/j.procs.2025.05.125_bib6 article-title: Brief introduction of medical database and data mining technology in big data era[J] publication-title: Journal of Evidence‐Based Medicine – volume: 16 start-page: 1733 issue: 11 year: 2023 ident: 10.1016/j.procs.2025.05.125_bib11 article-title: TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining[J] publication-title: Molecular plant doi: 10.1016/j.molp.2023.09.010 – volume: 49 start-page: 601 issue: 3 year: 2020 ident: 10.1016/j.procs.2025.05.125_bib13 article-title: Turning big data into tiny data: Constant-size coresets for k-means, pca, and projective clustering[J] publication-title: SIAM Journal on Computing doi: 10.1137/18M1209854 – volume: 53 start-page: 214 issue: 20 year: 2024 ident: 10.1016/j.procs.2025.05.125_bib2 article-title: Design and test research of LNG ship metering system [J] publication-title: Shandong Chemical Industry – volume: 53 start-page: 129 issue: 3 year: 2024 ident: 10.1016/j.procs.2025.05.125_bib3 article-title: Power metering system based on filtering to avoid power theft Behavior dynamic identification method [J] publication-title: Mechanical Design and Manufacturing Engineering – volume: 31 start-page: 4405 issue: 11 year: 2020 ident: 10.1016/j.procs.2025.05.125_bib9 article-title: When Gaussian process meets big data: A review of scalable GPs[J] publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2019.2957109 – volume: 9 start-page: 6305 issue: 9 year: 2020 ident: 10.1016/j.procs.2025.05.125_bib8 article-title: IoT, big data, and artificial intelligence in agriculture and food industry[J] publication-title: IEEE Internet of things Journal doi: 10.1109/JIOT.2020.2998584 |
| SSID | ssj0000388917 |
| Score | 2.34257 |
| Snippet | This paper aims to build an active defense system by integrating big data technology to address the security risks faced by existing smart metering systems,... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 909 |
| SubjectTerms | Big Data Blockchain Hadoop+Spark LSTM Metering System Safety Performance |
| Title | Analysis on Safety Performance Improvement of Smart Metering System Based on Big data |
| URI | https://dx.doi.org/10.1016/j.procs.2025.05.125 |
| Volume | 262 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6-Dl58i29y8LYW-k57VFE8qAgq7K0kTSIV7Yqu4snf7kwedWVFVPBStoEkJfPtzGSY-YaQ3VDJiJcKLjmSp0FaRGkgmMqDOuVKFEnNnaRP2fl50e-XF64r6pNpJ8Datnh9LR_-VdQwBsLG0tlfiLtbFAbgNwgdniB2eP5I8B80I_DP5RpTMi9GqgNsFEH5HIDLe1iid4ZJMYab2xA79w7Atklc4KC56bnytc6HNbUFACuTjo4dIXrOjHbZOCZDoN_wwV3TJfw0FhntzdAbSxdrsBXJNvQ1Vv5itGXBWIAEMtaYfDHmVGzsNK5VkqWfYN-s_h1T5TaqcIuGpEZe9ThDitXIfdRnjuxL3BU3BYcO-6jlk2Q6ZnBXwlzOt4-gG1LflKYLc_eZnonK5PyN7fW1tzLigVwtkDl3daD7VuSLZEK1S2Tet-WgTksvk2uPADpoqUUAHUEAHUEAHWhqEEA9AqhFADUIwAUAARQRsEKuj4-uDk8C1z0jqMGNywLNkkyAOy7Bg1NFkUcy01mo8ljGoeQCue1EIrWSYSISUOVxonMB6l0yjhyNMlklU-2gVWuEFrGWkRJwddc8BRPBudShZrJMapGmulwne_6UqgdLklL57MHbyhxqhYdahVkFh7pOcn-SlQOo9d8qkP13Ezf-OnGTzOKbDZ1tkanh47PaJjP1y7B5etwxGHkHpWt4cQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+on+Safety+Performance+Improvement+of+Smart+Metering+System+Based+on+Big+data&rft.jtitle=Procedia+computer+science&rft.au=Ji%2C+Xiaoli&rft.au=Li%2C+Tingting&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=262&rft.spage=909&rft.epage=918&rft_id=info:doi/10.1016%2Fj.procs.2025.05.125&rft.externalDocID=S1877050925019726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |