Automated pancreatic mass segmentation in computer tomography images using a voting ensemble method based on encoder-decoder architectures

Pancreatic cancer poses significant challenges in early diagnosis, with a high mortality rate of 98%, and is responsible for 4.7% of cancer deaths. Early diagnosis, mainly done by imaging exams, is the main factor that determines prognosis. While it is common to perform cascaded segmentation, the us...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 256; s. 1167 - 1174
Hlavní autori: Araújo, Alexandre de Carvalho, de Almeida, João Dallyson Sousa, de Paiva, Anselmo Cardoso, Júnior, Geraldo Braz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2025
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pancreatic cancer poses significant challenges in early diagnosis, with a high mortality rate of 98%, and is responsible for 4.7% of cancer deaths. Early diagnosis, mainly done by imaging exams, is the main factor that determines prognosis. While it is common to perform cascaded segmentation, the use of ensemble strategies is rarely explored in the literature for pancreatic mass segmentation. In cascaded methods, the performance of the pancreatic mass segmentation step is also directly affected by the previous steps. In this paper we aim to study the impact of a localization step in three levels of precision while using an ensemble method to carry out pancreatic mass segmentation. A voting ensemble method is proposed that combine three encoder-decoder based networks, namely U-Net, Feature Pyramid Network (FPN) and LinkNet. The results obtained were competitive with existing literature, achieving a Dice Score of 63.89 ± 2.88% on the smallest resolution and 60.35 ± 4.86% on the biggest resolution on the MSD dataset. The results show that an ensemble method can mitigate the impact of previous steps in a cascaded method without significant loss in performance.
AbstractList Pancreatic cancer poses significant challenges in early diagnosis, with a high mortality rate of 98%, and is responsible for 4.7% of cancer deaths. Early diagnosis, mainly done by imaging exams, is the main factor that determines prognosis. While it is common to perform cascaded segmentation, the use of ensemble strategies is rarely explored in the literature for pancreatic mass segmentation. In cascaded methods, the performance of the pancreatic mass segmentation step is also directly affected by the previous steps. In this paper we aim to study the impact of a localization step in three levels of precision while using an ensemble method to carry out pancreatic mass segmentation. A voting ensemble method is proposed that combine three encoder-decoder based networks, namely U-Net, Feature Pyramid Network (FPN) and LinkNet. The results obtained were competitive with existing literature, achieving a Dice Score of 63.89 ± 2.88% on the smallest resolution and 60.35 ± 4.86% on the biggest resolution on the MSD dataset. The results show that an ensemble method can mitigate the impact of previous steps in a cascaded method without significant loss in performance.
Author de Paiva, Anselmo Cardoso
Araújo, Alexandre de Carvalho
Júnior, Geraldo Braz
de Almeida, João Dallyson Sousa
Author_xml – sequence: 1
  givenname: Alexandre de Carvalho
  surname: Araújo
  fullname: Araújo, Alexandre de Carvalho
  email: alexandrearaujo@nca.ufma.br
  organization: ºNúcleo de Computação Aplicada – Federal University of Maranhãio (UFMA), São Luis, MA, Brasil
– sequence: 2
  givenname: João Dallyson Sousa
  surname: de Almeida
  fullname: de Almeida, João Dallyson Sousa
  organization: ºNúcleo de Computação Aplicada – Federal University of Maranhãio (UFMA), São Luis, MA, Brasil
– sequence: 3
  givenname: Anselmo Cardoso
  surname: de Paiva
  fullname: de Paiva, Anselmo Cardoso
  organization: ºNúcleo de Computação Aplicada – Federal University of Maranhãio (UFMA), São Luis, MA, Brasil
– sequence: 4
  givenname: Geraldo Braz
  surname: Júnior
  fullname: Júnior, Geraldo Braz
  organization: ºNúcleo de Computação Aplicada – Federal University of Maranhãio (UFMA), São Luis, MA, Brasil
BookMark eNp9UMtOwzAQtBBIlNIv4OIfSLCdpEkOHKqKl1SJC5wtx16nrho7sp1K_QW-GrflwIm9zGi1M9qZO3RtnQWEHijJKaHLx10-eidDzgircsJyxqorNKNNXWekIu31H36LFiHsSJqiaVpaz9D3aopuEBEUHoWVHkQ0Eg8iBBygH8DGtHAWG4ulG8YpgsdJ4Hovxu0Rm0H0EPAUjO2xwAcXTwRsgKHbAx4gbp3CnQjJP7mAlU6BzxScEQsvtyaCjJOHcI9utNgHWPziHH29PH-u37LNx-v7erXJJKNVlYEuJTAooVNMdmVBl0WrNQFap0BLLYuiVlVJVUF1BU060VBWDYO6hY4ITYo5Ki6-0rsQPGg--pTDHzkl_NQo3_Fzo_zUKCeMp0aT6umigvTawYDnQZqUB5TxKQBXzvyr_wG6M4a8
Cites_doi 10.1007/978-1-4842-6168-2_10
10.1016/j.jksuci.2023.01.014
10.1007/978-3-030-01228-1_15
10.1007/978-3-319-24574-4_28
10.1016/j.engappai.2022.105151
10.1109/ACCESS.2019.2913442
10.1109/VCIP.2017.8305148
10.1016/j.neucom.2022.10.060
10.1016/j.bspc.2023.105562
10.1016/j.neunet.2022.10.026
10.7150/thno.52508
10.1007/978-3-319-67558-9_28
10.1016/j.bspc.2022.103519
10.1016/j.patrec.2023.05.004
10.1109/CVPRW.2018.00051
10.1007/978-3-658-25326-4_7
10.1109/ICCV.2017.324
10.1016/j.media.2020.101884
10.1007/978-3-030-32245-8_24
10.1109/3DV.2019.00035
10.3390/cancers16020436
10.1038/s41598-022-07111-9
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.02.225
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1174
ExternalDocumentID 10_1016_j_procs_2025_02_225
S1877050925005861
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ABWVN
ACGFS
ACRPL
ADBBV
ADEZE
ADNMO
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c2155-ef4ce2e4ebd2cb431639ff0e179176fc337d541d31f5e82cbfe4582e79eb0af03
ISSN 1877-0509
IngestDate Thu Nov 27 01:07:07 EST 2025
Sat Apr 19 15:53:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pancreatic mass
Ensemble Model
Encoder-Decoder architecture
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2155-ef4ce2e4ebd2cb431639ff0e179176fc337d541d31f5e82cbfe4582e79eb0af03
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.02.225
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_procs_2025_02_225
elsevier_sciencedirect_doi_10_1016_j_procs_2025_02_225
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cao, L., Li, J., 2024. Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors. Biomedical Signal Processing and Control 87, 105562.
Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., Wirkert, S., et al., 2018. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486.
Si, K., Xue, Y., Yu, X., Zhu, X., Li, Q., Gong, W., Liang, T., Duan, S., 2021. Fully end-to-end deep-learning-based diagnosis of pancreatic tumors. Theranostics 11, 1982.
Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D., 2019. V-nas: Neural architecture search for volumetric medical image segmentation, in: 2019 International conference on 3d vision (3DV), IEEE. pp. 240–248.
Sorensen (bib24) 1948; 5
Kim, S.W., Kook, H.K., Sun, J.Y., Kang, M.C., Ko, S.J., 2018. Parallel feature pyramid network for object detection, in: Proceedings of the European conference on computer vision (ECCV), pp. 234–250.
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection, in: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
Preethi, M.V., Singh, I.H., Jaiswal, I.A.,. An end-to-end automatic pancreas segmentation using generative adversarial networks.
Cheng, S., 2018. Punção ecoendoscópica de massas sólidas pancreáticas por técnica de pressão negativa versus capilaridade estudo prospectivo e randomizado. Ph.D. thesis. Universidade de São Paulo.
Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M., 2017. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations, in: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3, Springer. pp. 240–248.
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer. pp. 234–241.
Chaurasia, A., Culurciello, E., 2017. Linknet: Exploiting encoder representations for efficient semantic segmentation, in: 2017 IEEE visual communications and image processing (VCIP), IEEE. pp. 1–4.
Li, Liu, He, Li, Xue (bib13) 2023; 157
Patel, H., Zanos, T., Hewitt, D.B., 2024. Deep learning applications in pancreatic cancer. Cancers 16, 436.
Koonce, B., Koonce, B., 2021. Efficientnet. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, 109–123.
Chen, H., Liu, Y., Shi, Z., Lyu, Y., 2022. Pancreas segmentation by two-view feature learning and multi-scale supervision. Biomedical Signal Processing and Control 74, 103519.
Powers, D.M., 2020. Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.
Zhang, Y., Wu, J., Liu, Y., Chen, Y., Chen, W., Wu, E.X., Li, C., Tang, X., 2021. A deep learning framework for pancreas segmentation with multi-atlas registration and 3d level-set. Medical Image Analysis 68, 101884.
Wu, Zhang, Liu, Zhou, Li (bib27) 2019; 7
acessado: 21/02/2022.
Mohammed, Kora (bib16) 2023; 35
de Câncer, I.N., 2023. Câncer de pâncreas. URL
Dai, Zhu, Jiang, Yu, Lin, Yang (bib6) 2023; 517
Fang, C., Li, G., Pan, C., Li, Y., Yu, Y., 2019. Globally guided progressive fusion network for 3d pancreas segmentation, in: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22, Springer. pp. 210–218.
Mahmoudi, T., Kouzahkanan, Z.M., Radmard, A.R., Kafieh, R.,Salehnia, A., Davarpanah, A.H., Arabalibeik, H., Ahmadian, A., 2022. Segmentation of pancreatic ductal adenocarcinoma (pdac) and surrounding vessels in ct images using deep convolutional neural networks and texture descriptors. Scientific Reports 12, 3092.
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bib26) 2021; 71
Ju, Li, Chang, Liang, Guan, Xu, Xie, Wang (bib10) 2023; 170
Seferbekov, S., Iglovikov, V., Buslaev, A., Shvets, A., 2018. Feature pyramid network for multi-class land segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 272–275.
Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken, B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., et al., 2019. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv.
Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., Suganthan, P.N., 2022. Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence 115, 105151.
Li (10.1016/j.procs.2025.02.225_bib13) 2023; 157
10.1016/j.procs.2025.02.225_bib20
10.1016/j.procs.2025.02.225_bib9
10.1016/j.procs.2025.02.225_bib3
10.1016/j.procs.2025.02.225_bib4
10.1016/j.procs.2025.02.225_bib1
10.1016/j.procs.2025.02.225_bib2
10.1016/j.procs.2025.02.225_bib7
10.1016/j.procs.2025.02.225_bib8
10.1016/j.procs.2025.02.225_bib5
Mohammed (10.1016/j.procs.2025.02.225_bib16) 2023; 35
10.1016/j.procs.2025.02.225_bib18
10.1016/j.procs.2025.02.225_bib19
Dai (10.1016/j.procs.2025.02.225_bib6) 2023; 517
10.1016/j.procs.2025.02.225_bib17
10.1016/j.procs.2025.02.225_bib14
10.1016/j.procs.2025.02.225_bib15
10.1016/j.procs.2025.02.225_bib12
10.1016/j.procs.2025.02.225_bib11
Sung (10.1016/j.procs.2025.02.225_bib26) 2021; 71
Sorensen (10.1016/j.procs.2025.02.225_bib24) 1948; 5
Ju (10.1016/j.procs.2025.02.225_bib10) 2023; 170
10.1016/j.procs.2025.02.225_bib29
10.1016/j.procs.2025.02.225_bib28
10.1016/j.procs.2025.02.225_bib25
Wu (10.1016/j.procs.2025.02.225_bib27) 2019; 7
10.1016/j.procs.2025.02.225_bib23
10.1016/j.procs.2025.02.225_bib21
10.1016/j.procs.2025.02.225_bib22
References_xml – reference: Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken, B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., et al., 2019. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv.
– reference: Fang, C., Li, G., Pan, C., Li, Y., Yu, Y., 2019. Globally guided progressive fusion network for 3d pancreas segmentation, in: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22, Springer. pp. 210–218.
– reference: Chen, H., Liu, Y., Shi, Z., Lyu, Y., 2022. Pancreas segmentation by two-view feature learning and multi-scale supervision. Biomedical Signal Processing and Control 74, 103519.
– reference: Koonce, B., Koonce, B., 2021. Efficientnet. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, 109–123.
– reference: de Câncer, I.N., 2023. Câncer de pâncreas. URL:
– reference: . acessado: 21/02/2022.
– reference: Powers, D.M., 2020. Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.
– reference: Zhang, Y., Wu, J., Liu, Y., Chen, Y., Chen, W., Wu, E.X., Li, C., Tang, X., 2021. A deep learning framework for pancreas segmentation with multi-atlas registration and 3d level-set. Medical Image Analysis 68, 101884.
– volume: 170
  start-page: 85
  year: 2023
  end-page: 92
  ident: bib10
  article-title: Incorporating multi-stage spatial visual cues and active localization offset for pancreas segmentation
  publication-title: Pattern Recognition Letters
– reference: Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M., 2017. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations, in: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3, Springer. pp. 240–248.
– reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection, in: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
– volume: 7
  start-page: 55609
  year: 2019
  end-page: 55619
  ident: bib27
  article-title: Towards accurate high resolution satellite image semantic segmentation
  publication-title: Ieee Access
– reference: Cao, L., Li, J., 2024. Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors. Biomedical Signal Processing and Control 87, 105562.
– reference: Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., Suganthan, P.N., 2022. Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence 115, 105151.
– reference: Cheng, S., 2018. Punção ecoendoscópica de massas sólidas pancreáticas por técnica de pressão negativa versus capilaridade estudo prospectivo e randomizado. Ph.D. thesis. Universidade de São Paulo.
– volume: 517
  start-page: 279
  year: 2023
  end-page: 293
  ident: bib6
  article-title: Td-net: Trans-deformer network for automatic pancreas segmentation
  publication-title: Neurocomputing
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: bib26
  article-title: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: a cancer journal for clinicians
– reference: Kim, S.W., Kook, H.K., Sun, J.Y., Kang, M.C., Ko, S.J., 2018. Parallel feature pyramid network for object detection, in: Proceedings of the European conference on computer vision (ECCV), pp. 234–250.
– reference: Patel, H., Zanos, T., Hewitt, D.B., 2024. Deep learning applications in pancreatic cancer. Cancers 16, 436.
– reference: Preethi, M.V., Singh, I.H., Jaiswal, I.A.,. An end-to-end automatic pancreas segmentation using generative adversarial networks.
– reference: Si, K., Xue, Y., Yu, X., Zhu, X., Li, Q., Gong, W., Liang, T., Duan, S., 2021. Fully end-to-end deep-learning-based diagnosis of pancreatic tumors. Theranostics 11, 1982.
– reference: Seferbekov, S., Iglovikov, V., Buslaev, A., Shvets, A., 2018. Feature pyramid network for multi-class land segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 272–275.
– reference: Mahmoudi, T., Kouzahkanan, Z.M., Radmard, A.R., Kafieh, R.,Salehnia, A., Davarpanah, A.H., Arabalibeik, H., Ahmadian, A., 2022. Segmentation of pancreatic ductal adenocarcinoma (pdac) and surrounding vessels in ct images using deep convolutional neural networks and texture descriptors. Scientific Reports 12, 3092.
– volume: 5
  start-page: 1
  year: 1948
  end-page: 34
  ident: bib24
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons
  publication-title: Biol. Skar
– reference: Chaurasia, A., Culurciello, E., 2017. Linknet: Exploiting encoder representations for efficient semantic segmentation, in: 2017 IEEE visual communications and image processing (VCIP), IEEE. pp. 1–4.
– reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer. pp. 234–241.
– volume: 157
  start-page: 387
  year: 2023
  end-page: 403
  ident: bib13
  article-title: Temperature guided network for 3d joint segmentation of the pancreas and tumors
  publication-title: Neural Networks
– reference: Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D., 2019. V-nas: Neural architecture search for volumetric medical image segmentation, in: 2019 International conference on 3d vision (3DV), IEEE. pp. 240–248.
– volume: 35
  start-page: 757
  year: 2023
  end-page: 774
  ident: bib16
  article-title: A comprehensive review on ensemble deep learning: Opportunities and challenges
  publication-title: Journal of King Saud University-Computer and Information Sciences
– reference: Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., Wirkert, S., et al., 2018. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486.
– volume: 5
  start-page: 1
  year: 1948
  ident: 10.1016/j.procs.2025.02.225_bib24
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons
  publication-title: Biol. Skar
– ident: 10.1016/j.procs.2025.02.225_bib12
  doi: 10.1007/978-1-4842-6168-2_10
– volume: 35
  start-page: 757
  year: 2023
  ident: 10.1016/j.procs.2025.02.225_bib16
  article-title: A comprehensive review on ensemble deep learning: Opportunities and challenges
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2023.01.014
– ident: 10.1016/j.procs.2025.02.225_bib11
  doi: 10.1007/978-3-030-01228-1_15
– ident: 10.1016/j.procs.2025.02.225_bib20
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.procs.2025.02.225_bib8
  doi: 10.1016/j.engappai.2022.105151
– volume: 7
  start-page: 55609
  year: 2019
  ident: 10.1016/j.procs.2025.02.225_bib27
  article-title: Towards accurate high resolution satellite image semantic segmentation
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2913442
– ident: 10.1016/j.procs.2025.02.225_bib2
  doi: 10.1109/VCIP.2017.8305148
– ident: 10.1016/j.procs.2025.02.225_bib19
– volume: 517
  start-page: 279
  year: 2023
  ident: 10.1016/j.procs.2025.02.225_bib6
  article-title: Td-net: Trans-deformer network for automatic pancreas segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.060
– ident: 10.1016/j.procs.2025.02.225_bib5
– ident: 10.1016/j.procs.2025.02.225_bib1
  doi: 10.1016/j.bspc.2023.105562
– volume: 157
  start-page: 387
  year: 2023
  ident: 10.1016/j.procs.2025.02.225_bib13
  article-title: Temperature guided network for 3d joint segmentation of the pancreas and tumors
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.10.026
– ident: 10.1016/j.procs.2025.02.225_bib22
  doi: 10.7150/thno.52508
– ident: 10.1016/j.procs.2025.02.225_bib23
– ident: 10.1016/j.procs.2025.02.225_bib25
  doi: 10.1007/978-3-319-67558-9_28
– volume: 71
  start-page: 209
  year: 2021
  ident: 10.1016/j.procs.2025.02.225_bib26
  article-title: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: a cancer journal for clinicians
– ident: 10.1016/j.procs.2025.02.225_bib3
  doi: 10.1016/j.bspc.2022.103519
– volume: 170
  start-page: 85
  year: 2023
  ident: 10.1016/j.procs.2025.02.225_bib10
  article-title: Incorporating multi-stage spatial visual cues and active localization offset for pancreas segmentation
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2023.05.004
– ident: 10.1016/j.procs.2025.02.225_bib21
  doi: 10.1109/CVPRW.2018.00051
– ident: 10.1016/j.procs.2025.02.225_bib9
  doi: 10.1007/978-3-658-25326-4_7
– ident: 10.1016/j.procs.2025.02.225_bib14
  doi: 10.1109/ICCV.2017.324
– ident: 10.1016/j.procs.2025.02.225_bib28
  doi: 10.1016/j.media.2020.101884
– ident: 10.1016/j.procs.2025.02.225_bib18
– ident: 10.1016/j.procs.2025.02.225_bib4
– ident: 10.1016/j.procs.2025.02.225_bib7
  doi: 10.1007/978-3-030-32245-8_24
– ident: 10.1016/j.procs.2025.02.225_bib29
  doi: 10.1109/3DV.2019.00035
– ident: 10.1016/j.procs.2025.02.225_bib17
  doi: 10.3390/cancers16020436
– ident: 10.1016/j.procs.2025.02.225_bib15
  doi: 10.1038/s41598-022-07111-9
SSID ssj0000388917
Score 2.3494058
Snippet Pancreatic cancer poses significant challenges in early diagnosis, with a high mortality rate of 98%, and is responsible for 4.7% of cancer deaths. Early...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1167
SubjectTerms Encoder-Decoder architecture
Ensemble Model
Pancreatic mass
Title Automated pancreatic mass segmentation in computer tomography images using a voting ensemble method based on encoder-decoder architectures
URI https://dx.doi.org/10.1016/j.procs.2025.02.225
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaghAX3ojykg_cQqTNax0fF8RDSFSVKFJvkeNMINUmQZvdVeHAD-BXM2M7jz5U0QOX7K6VnTzmi2cynvmGsVcq1SmgKfNlrPAFpcxzP4-SwC_zCPEE0VyCbTYhDg7S42N5uLN7q6-F2S5F06Snp_LHf1U1jqGyqXT2GuoehOIAfkel4xbVjtt_Uvxis27RDUVHEh906xNqr0Yf2evgW-1KjUx-o3YdHdD_rB1ztVfVilgfNiaEoLxta9Ki8V0Xaqqxsg2nPbJ9Ba0zEA1mASu_APPpTdcluqnjawoSEIvjQZ3tHRGnaNH-DV7kpPBmRWVdlJWCd-h72--LQ4tlDVVhE31bs9oftQjh5fIntVT80m46Ndn7UFVbG0CmAvy6JYlF2w0CP9lDN5UNXnwwgboWga9-TcMitnjazeGpED7R2lgTd8mYm_jDZDp104LUxA0IAts96IKJsdGOEzJwmvjew4RIX0N3BmcIvc8Z2iH9sc-sO8mMkIyEZLMwQyG77EYoEknJiZ9_j9FC4uyRpn30cCU9hZZJVrxwMpe7WRPX6egeu-PeefjCYvU-24HmAbvb9xPhzrw8ZH8G6PIRupygy6fQ5VXDexTxEbrcQpcb6HLFLXR5D11uocsNdDlKOQddfga6j9jX9--O3n70Xa8QX6PTmvhQxhpCiCEvQp0Tv0Mky3IGxL4r5qWOIlEkcVBEQZlAiruUQCvGICTkM1XOosdsr2kbeMI4FIkgFkkZySCOhcjLUMVqnqgUjZWW6T573d9a1J-hhMmu0Og-m_e3P3NPlvVWM0TUVX98er3jPGO36ZcNDz5ne-vVBl6wm3q7rrrVSwOnv9qey2k
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+pancreatic+mass+segmentation+in+computer+tomography+images+using+a+voting+ensemble+method+based+on+encoder-decoder+architectures&rft.jtitle=Procedia+computer+science&rft.au=Ara%C3%BAjo%2C+Alexandre+de+Carvalho&rft.au=de+Almeida%2C+Jo%C3%A3o+Dallyson+Sousa&rft.au=de+Paiva%2C+Anselmo+Cardoso&rft.au=J%C3%BAnior%2C+Geraldo+Braz&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=256&rft.spage=1167&rft.epage=1174&rft_id=info:doi/10.1016%2Fj.procs.2025.02.225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_02_225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon