Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended Abstract)

Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science Jg. DMTCS Proceedings vol. AQ,...; H. Proceedings; S. 339 - 348
Hauptverfasser: Bindjeme, Patrick, fill, james Allen
Format: Journal Article Tagungsbericht
Sprache:Englisch
Veröffentlicht: DMTCS 01.01.2012
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Schriftenreihe:DMTCS Proceedings
Schlagworte:
ISSN:1365-8050, 1462-7264, 1365-8050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that the $d_2$-distance is of order between $n^{-1} \log{n}$ and $n^{-1/2}$, and another by Neininger and Ruschendorf (2002) found that the Zolotarev $\zeta _3$-distance is of exact order $n^{-1} \log{n}$. Our expression reveals that the $L^2$-distance is asymptotically equivalent to $(2 n^{-1} \ln{n})^{1/2}$.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.3003