Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems

Let $k≥2$ be a fixed integer. Given a bounded sequence of real numbers $(a_n:n≥k)$, then for any sequence $(f_n:n≥1)$ of real numbers satisfying the divide-and-conquer recurrence $f_n = (k-mod(n,k))f_⌊n/k⌋+mod(n,k)f_⌈n/k⌉ + a_n, n ≥k$, there is a unique continuous periodic function $f^*:\mathbb{R}→\...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics and theoretical computer science Vol. DMTCS Proceedings vol. AQ,...; no. Proceedings; pp. 55 - 66
Main Author: Kieffer, John
Format: Journal Article Conference Proceeding
Language:English
Published: DMTCS 01.01.2012
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Series:DMTCS Proceedings
Subjects:
ISSN:1365-8050, 1462-7264, 1365-8050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first