Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems
Let $k≥2$ be a fixed integer. Given a bounded sequence of real numbers $(a_n:n≥k)$, then for any sequence $(f_n:n≥1)$ of real numbers satisfying the divide-and-conquer recurrence $f_n = (k-mod(n,k))f_⌊n/k⌋+mod(n,k)f_⌈n/k⌉ + a_n, n ≥k$, there is a unique continuous periodic function $f^*:\mathbb{R}→\...
Saved in:
| Published in: | Discrete mathematics and theoretical computer science Vol. DMTCS Proceedings vol. AQ,...; no. Proceedings; pp. 55 - 66 |
|---|---|
| Main Author: | |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
DMTCS
01.01.2012
Discrete Mathematics and Theoretical Computer Science Discrete Mathematics & Theoretical Computer Science |
| Series: | DMTCS Proceedings |
| Subjects: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!