A numerical study of an infeasible interior-point algorithm for convex quadratic semi-definite optimization

The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex quadratic semidefinite optimization (CQSDO) problems. In this paper, we present a numerical study of an infeasible primal-dual interior-point me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of numerical analysis and approximation theory Jg. 53; H. 2; S. 199 - 217
Hauptverfasser: Bendaas, Yasmina, Achache, Mohamed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Publishing House of the Romanian Academy 18.12.2024
Schlagworte:
ISSN:2457-6794, 2501-059X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex quadratic semidefinite optimization (CQSDO) problems. In this paper, we present a numerical study of an infeasible primal-dual interior-point method for tackling this class of optimization problems. Unlike the feasible interior-point algorithms, the proposed algorithm can be start with any initial positive definite matrix and does not require the strictly feasible initial points. Under certain conditions, the Newton system is well defined and its Jacobian is nonsingular at the solution. For computing an iteration throughout the algorithm, a Newton direction and a step-size are determined. Here, our search direction is based on Alizadeh-Haeberly-Overton (AHO) symmetrization. However, for the step size along this direction an efficient procedure is suggested. Preliminary numerical results demonstrate the efficiency of our algorithm.
AbstractList The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex quadratic semidefinite optimization (CQSDO) problems. In this paper, we present a numerical study of an infeasible primal-dual interior-point method for tackling this class of optimization problems. Unlike the feasible interior-point algorithms, the proposed algorithm can be start with any initial positive definite matrix and does not require the strictly feasible initial points. Under certain conditions, the Newton system is well defined and its Jacobian is nonsingular at the solution. For computing an iteration throughout the algorithm, a Newton direction and a step-size are determined. Here, our search direction is based on Alizadeh-Haeberly-Overton (AHO) symmetrization. However, for the step size along this direction an efficient procedure is suggested. Preliminary numerical results demonstrate the efficiency of our algorithm.
Author Bendaas, Yasmina
Achache, Mohamed
Author_xml – sequence: 1
  givenname: Yasmina
  surname: Bendaas
  fullname: Bendaas, Yasmina
– sequence: 2
  givenname: Mohamed
  surname: Achache
  fullname: Achache, Mohamed
BookMark eNo9kE1LxDAQhoOs4OfVc_5A10yTbJqjiF-w4EXBW5mmE83aJmvaFfXXW3fV07zMOzwMzxGbxRSJsTMQcymtleeriDhqWRagVLnHDkstoBDaPs2mrLQpFsaqA3Y6DCshBJhSqgoO2esFj5uecnDY8WHctJ88eY6Rh-gJh9B0NMVxOki5WKcpcuyeUw7jS899ytyl-E4f_G2DbcYxOD5QH4qWfIhhJJ7WY-jD19SkeML2PXYDnf7OY_Z4ffVweVss72_uLi-WhStBl4WVgGisl1q4SlbC-NIJ0OidwgU6I5tKea8aoYBM66kRpQAgLT1aA07JY3a347YJV_U6hx7zZ50w1NtFys815unVjmqqWgMVkbcNqRaU1ZV0k64WFkK5BUys-Y7lchqGTP6fB6Lemq__zNc_5uU37EN7EQ
Cites_doi 10.1016/j.cnsns.2018.04.019
10.1137/0806020
10.1122/1.549724
10.19139/soic-2310-5070-1385
10.1016/j.amc.2013.12.070
10.1007/BF02903846
10.1007/s101070050046
10.24200/squjs.vol23iss1pp43-55
10.1142/S1793557122501704
10.1016/j.chaos.2017.03.051
10.1051/ro/2010016
10.1080/10556789908805762
10.1016/j.amc.2010.03.015
10.1137/0804012
10.1007/s11590-018-1328-9
10.1137/S1052623495290209
10.1137/S1052623496304700
10.1016/j.ijin.2020.05.001
10.1137/0517050
10.1016/j.apnum.2019.03.017
10.21914/anziamj.v59i0.12592
10.1051/ro/2022192
10.1016/j.cam.2016.05.008
10.4038/cjs.v51i5.8085
10.1088/0305-4470/37/31/R01
10.1007/PL00011387
10.1016/j.cam.2004.01.033
10.1137/1.9781611971453
10.1016/0960-0779(95)00125-5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.33993/jnaat532-1442
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2501-059X
EndPage 217
ExternalDocumentID oai_doaj_org_article_e8d718eef9be4d149583c245d1604c61
10_33993_jnaat532_1442
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2152-931aa79f350c83807f2c015afc4a6ac73b84ff4b041e7dfeb02011e53fa971c43
IEDL.DBID DOA
ISSN 2457-6794
IngestDate Fri Oct 03 12:42:15 EDT 2025
Wed Nov 12 01:45:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2152-931aa79f350c83807f2c015afc4a6ac73b84ff4b041e7dfeb02011e53fa971c43
OpenAccessLink https://doaj.org/article/e8d718eef9be4d149583c245d1604c61
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_e8d718eef9be4d149583c245d1604c61
crossref_primary_10_33993_jnaat532_1442
PublicationCentury 2000
PublicationDate 2024-12-18
PublicationDateYYYYMMDD 2024-12-18
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-18
  day: 18
PublicationDecade 2020
PublicationTitle Journal of numerical analysis and approximation theory
PublicationYear 2024
Publisher Publishing House of the Romanian Academy
Publisher_xml – name: Publishing House of the Romanian Academy
References 31807
31806
31809
31808
31795
31794
31775
31797
31796
31791
31790
31793
31792
31777
31799
31810
31776
31798
31779
31812
31778
31811
31784
31783
31786
31785
31780
31782
31781
31803
31802
31805
31804
31788
31787
31801
31789
31800
References_xml – ident: 31788
  doi: 10.1016/j.cnsns.2018.04.019
– ident: 31797
  doi: 10.1137/0806020
– ident: 31784
  doi: 10.1122/1.549724
– ident: 31803
  doi: 10.19139/soic-2310-5070-1385
– ident: 31791
  doi: 10.1016/j.amc.2013.12.070
– ident: 31805
  doi: 10.1007/BF02903846
– ident: 31810
– ident: 31801
  doi: 10.1007/s101070050046
– ident: 31777
  doi: 10.24200/squjs.vol23iss1pp43-55
– ident: 31806
– ident: 31799
  doi: 10.1142/S1793557122501704
– ident: 31789
  doi: 10.1016/j.chaos.2017.03.051
– ident: 31794
  doi: 10.1051/ro/2010016
– ident: 31807
  doi: 10.1080/10556789908805762
– ident: 31790
  doi: 10.1016/j.amc.2010.03.015
– ident: 31812
  doi: 10.1137/0804012
– ident: 31792
  doi: 10.1007/s11590-018-1328-9
– ident: 31802
– ident: 31804
  doi: 10.1137/S1052623495290209
– ident: 31785
– ident: 31793
  doi: 10.1137/S1052623496304700
– ident: 31780
  doi: 10.1016/j.ijin.2020.05.001
– ident: 31778
  doi: 10.1137/0517050
– ident: 31782
  doi: 10.1016/j.apnum.2019.03.017
– ident: 31776
  doi: 10.21914/anziamj.v59i0.12592
– ident: 31811
– ident: 31800
  doi: 10.1051/ro/2022192
– ident: 31775
– ident: 31808
  doi: 10.1016/j.cam.2016.05.008
– ident: 31779
– ident: 31787
  doi: 10.4038/cjs.v51i5.8085
– ident: 31795
– ident: 31796
– ident: 31786
  doi: 10.1088/0305-4470/37/31/R01
– ident: 31798
  doi: 10.1007/PL00011387
– ident: 31781
  doi: 10.1016/j.cam.2004.01.033
– ident: 31809
  doi: 10.1137/1.9781611971453
– ident: 31783
  doi: 10.1016/0960-0779(95)00125-5
SSID ssj0001723481
Score 2.2770674
Snippet The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 199
SubjectTerms Convex quadratic semidefinite optimization, Interior-point methods, Primal-dual algorithm, Newton method
Title A numerical study of an infeasible interior-point algorithm for convex quadratic semi-definite optimization
URI https://doaj.org/article/e8d718eef9be4d149583c245d1604c61
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2501-059X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723481
  issn: 2457-6794
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqxKEXKAVUWkA-VOJkkcR2bB-h6ooT4tBK3CJn4qGhuwnN7lZ8fj1xtlpOXLhFURRFbyaeN8n4Pca-GvBOIoJQMVlErPgoPKpMkBCIrxUoHZLZhLm9tff37m7L6otmwpI8cALuMtgmLp8hoKuDaojPWwmF0k1eZgpS45MZt9VMjV9XTEE7TMlZTmkjyph1SbFRUkG-fOy8X2lZiNhOFC8q0pZw_1hhZh_Y3kQN-VV6pAP2LnQf2f5EE_n0Ei4P2e8r3q3Tj5Y5H-VheY_cd5wGq3xM8XngpAIxtP0gnvp4yP38oR_a1a8FjxyVj5Pmz_zP2jcUf-DLsGhFE7AlAsr7uIospu2ZR-zn7PuPbzdi8kwQQA61wsnce-NQ6gwsicljAbHiewTlSw9G1lYhqjpTeTANhjojBhC0RO9MDkoes52u78Inxm3dgNGxHXIxZA5LqyGzaHUBYCzW2Qm72OBWPSVpjCq2FCPC1QbhihA-YdcE6_-rSNJ6PBEDXU2Brl4L9Oe3uMkX9r6IrITmUXJ7ynZWwzqcsV34u2qXw_mYQ_8A7cDMFg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+an+infeasible+interior-point+algorithm+for+convex+quadratic+semi-definite+optimization&rft.jtitle=Journal+of+numerical+analysis+and+approximation+theory&rft.au=Bendaas%2C+Yasmina&rft.au=Achache%2C+Mohamed&rft.date=2024-12-18&rft.issn=2457-6794&rft.eissn=2501-059X&rft.volume=53&rft.issue=2&rft.spage=199&rft.epage=217&rft_id=info:doi/10.33993%2Fjnaat532-1442&rft.externalDBID=n%2Fa&rft.externalDocID=10_33993_jnaat532_1442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2457-6794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2457-6794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2457-6794&client=summon