A numerical study of an infeasible interior-point algorithm for convex quadratic semi-definite optimization
The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex quadratic semidefinite optimization (CQSDO) problems. In this paper, we present a numerical study of an infeasible primal-dual interior-point me...
Gespeichert in:
| Veröffentlicht in: | Journal of numerical analysis and approximation theory Jg. 53; H. 2; S. 199 - 217 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Publishing House of the Romanian Academy
18.12.2024
|
| Schlagworte: | |
| ISSN: | 2457-6794, 2501-059X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex quadratic semidefinite optimization (CQSDO) problems. In this paper, we present a numerical study of an infeasible primal-dual interior-point method for tackling this class of optimization problems. Unlike the feasible interior-point algorithms, the proposed algorithm can be start with any initial positive definite matrix and does not require the strictly feasible initial points. Under certain conditions, the Newton system is well defined and its Jacobian is nonsingular at the solution. For computing an iteration throughout the algorithm, a Newton direction and a step-size are determined. Here, our search direction is based on Alizadeh-Haeberly-Overton (AHO) symmetrization. However, for the step size along this direction an efficient procedure is suggested. Preliminary numerical results demonstrate the efficiency of our algorithm. |
|---|---|
| AbstractList | The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex quadratic semidefinite optimization (CQSDO) problems. In this paper, we present a numerical study of an infeasible primal-dual interior-point method for tackling this class of optimization problems. Unlike the feasible interior-point algorithms, the proposed algorithm can be start with any initial positive definite matrix and does not require the strictly feasible initial points. Under certain conditions, the Newton system is well defined and its Jacobian is nonsingular at the solution. For computing an iteration throughout the algorithm, a Newton direction and a step-size are determined. Here, our search direction is based on Alizadeh-Haeberly-Overton (AHO) symmetrization. However, for the step size along this direction an efficient procedure is suggested. Preliminary numerical results demonstrate the efficiency of our algorithm. |
| Author | Bendaas, Yasmina Achache, Mohamed |
| Author_xml | – sequence: 1 givenname: Yasmina surname: Bendaas fullname: Bendaas, Yasmina – sequence: 2 givenname: Mohamed surname: Achache fullname: Achache, Mohamed |
| BookMark | eNo9kE1LxDAQhoOs4OfVc_5A10yTbJqjiF-w4EXBW5mmE83aJmvaFfXXW3fV07zMOzwMzxGbxRSJsTMQcymtleeriDhqWRagVLnHDkstoBDaPs2mrLQpFsaqA3Y6DCshBJhSqgoO2esFj5uecnDY8WHctJ88eY6Rh-gJh9B0NMVxOki5WKcpcuyeUw7jS899ytyl-E4f_G2DbcYxOD5QH4qWfIhhJJ7WY-jD19SkeML2PXYDnf7OY_Z4ffVweVss72_uLi-WhStBl4WVgGisl1q4SlbC-NIJ0OidwgU6I5tKea8aoYBM66kRpQAgLT1aA07JY3a347YJV_U6hx7zZ50w1NtFys815unVjmqqWgMVkbcNqRaU1ZV0k64WFkK5BUys-Y7lchqGTP6fB6Lemq__zNc_5uU37EN7EQ |
| Cites_doi | 10.1016/j.cnsns.2018.04.019 10.1137/0806020 10.1122/1.549724 10.19139/soic-2310-5070-1385 10.1016/j.amc.2013.12.070 10.1007/BF02903846 10.1007/s101070050046 10.24200/squjs.vol23iss1pp43-55 10.1142/S1793557122501704 10.1016/j.chaos.2017.03.051 10.1051/ro/2010016 10.1080/10556789908805762 10.1016/j.amc.2010.03.015 10.1137/0804012 10.1007/s11590-018-1328-9 10.1137/S1052623495290209 10.1137/S1052623496304700 10.1016/j.ijin.2020.05.001 10.1137/0517050 10.1016/j.apnum.2019.03.017 10.21914/anziamj.v59i0.12592 10.1051/ro/2022192 10.1016/j.cam.2016.05.008 10.4038/cjs.v51i5.8085 10.1088/0305-4470/37/31/R01 10.1007/PL00011387 10.1016/j.cam.2004.01.033 10.1137/1.9781611971453 10.1016/0960-0779(95)00125-5 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.33993/jnaat532-1442 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2501-059X |
| EndPage | 217 |
| ExternalDocumentID | oai_doaj_org_article_e8d718eef9be4d149583c245d1604c61 10_33993_jnaat532_1442 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c2152-931aa79f350c83807f2c015afc4a6ac73b84ff4b041e7dfeb02011e53fa971c43 |
| IEDL.DBID | DOA |
| ISSN | 2457-6794 |
| IngestDate | Fri Oct 03 12:42:15 EDT 2025 Wed Nov 12 01:45:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2152-931aa79f350c83807f2c015afc4a6ac73b84ff4b041e7dfeb02011e53fa971c43 |
| OpenAccessLink | https://doaj.org/article/e8d718eef9be4d149583c245d1604c61 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e8d718eef9be4d149583c245d1604c61 crossref_primary_10_33993_jnaat532_1442 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-18 |
| PublicationDateYYYYMMDD | 2024-12-18 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of numerical analysis and approximation theory |
| PublicationYear | 2024 |
| Publisher | Publishing House of the Romanian Academy |
| Publisher_xml | – name: Publishing House of the Romanian Academy |
| References | 31807 31806 31809 31808 31795 31794 31775 31797 31796 31791 31790 31793 31792 31777 31799 31810 31776 31798 31779 31812 31778 31811 31784 31783 31786 31785 31780 31782 31781 31803 31802 31805 31804 31788 31787 31801 31789 31800 |
| References_xml | – ident: 31788 doi: 10.1016/j.cnsns.2018.04.019 – ident: 31797 doi: 10.1137/0806020 – ident: 31784 doi: 10.1122/1.549724 – ident: 31803 doi: 10.19139/soic-2310-5070-1385 – ident: 31791 doi: 10.1016/j.amc.2013.12.070 – ident: 31805 doi: 10.1007/BF02903846 – ident: 31810 – ident: 31801 doi: 10.1007/s101070050046 – ident: 31777 doi: 10.24200/squjs.vol23iss1pp43-55 – ident: 31806 – ident: 31799 doi: 10.1142/S1793557122501704 – ident: 31789 doi: 10.1016/j.chaos.2017.03.051 – ident: 31794 doi: 10.1051/ro/2010016 – ident: 31807 doi: 10.1080/10556789908805762 – ident: 31790 doi: 10.1016/j.amc.2010.03.015 – ident: 31812 doi: 10.1137/0804012 – ident: 31792 doi: 10.1007/s11590-018-1328-9 – ident: 31802 – ident: 31804 doi: 10.1137/S1052623495290209 – ident: 31785 – ident: 31793 doi: 10.1137/S1052623496304700 – ident: 31780 doi: 10.1016/j.ijin.2020.05.001 – ident: 31778 doi: 10.1137/0517050 – ident: 31782 doi: 10.1016/j.apnum.2019.03.017 – ident: 31776 doi: 10.21914/anziamj.v59i0.12592 – ident: 31811 – ident: 31800 doi: 10.1051/ro/2022192 – ident: 31775 – ident: 31808 doi: 10.1016/j.cam.2016.05.008 – ident: 31779 – ident: 31787 doi: 10.4038/cjs.v51i5.8085 – ident: 31795 – ident: 31796 – ident: 31786 doi: 10.1088/0305-4470/37/31/R01 – ident: 31798 doi: 10.1007/PL00011387 – ident: 31781 doi: 10.1016/j.cam.2004.01.033 – ident: 31809 doi: 10.1137/1.9781611971453 – ident: 31783 doi: 10.1016/0960-0779(95)00125-5 |
| SSID | ssj0001723481 |
| Score | 2.2770674 |
| Snippet | The focus of this research is to apply primal-dual interior-point pathfollowing methods, specifically those derived from Newton’s method for solving convex... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 199 |
| SubjectTerms | Convex quadratic semidefinite optimization, Interior-point methods, Primal-dual algorithm, Newton method |
| Title | A numerical study of an infeasible interior-point algorithm for convex quadratic semi-definite optimization |
| URI | https://doaj.org/article/e8d718eef9be4d149583c245d1604c61 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2501-059X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723481 issn: 2457-6794 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqxKEXKAVUWkA-VOJkkcR2bB-h6ooT4tBK3CJn4qGhuwnN7lZ8fj1xtlpOXLhFURRFbyaeN8n4Pca-GvBOIoJQMVlErPgoPKpMkBCIrxUoHZLZhLm9tff37m7L6otmwpI8cALuMtgmLp8hoKuDaojPWwmF0k1eZgpS45MZt9VMjV9XTEE7TMlZTmkjyph1SbFRUkG-fOy8X2lZiNhOFC8q0pZw_1hhZh_Y3kQN-VV6pAP2LnQf2f5EE_n0Ei4P2e8r3q3Tj5Y5H-VheY_cd5wGq3xM8XngpAIxtP0gnvp4yP38oR_a1a8FjxyVj5Pmz_zP2jcUf-DLsGhFE7AlAsr7uIospu2ZR-zn7PuPbzdi8kwQQA61wsnce-NQ6gwsicljAbHiewTlSw9G1lYhqjpTeTANhjojBhC0RO9MDkoes52u78Inxm3dgNGxHXIxZA5LqyGzaHUBYCzW2Qm72OBWPSVpjCq2FCPC1QbhihA-YdcE6_-rSNJ6PBEDXU2Brl4L9Oe3uMkX9r6IrITmUXJ7ynZWwzqcsV34u2qXw_mYQ_8A7cDMFg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+an+infeasible+interior-point+algorithm+for+convex+quadratic+semi-definite+optimization&rft.jtitle=Journal+of+numerical+analysis+and+approximation+theory&rft.au=Bendaas%2C+Yasmina&rft.au=Achache%2C+Mohamed&rft.date=2024-12-18&rft.issn=2457-6794&rft.eissn=2501-059X&rft.volume=53&rft.issue=2&rft.spage=199&rft.epage=217&rft_id=info:doi/10.33993%2Fjnaat532-1442&rft.externalDBID=n%2Fa&rft.externalDocID=10_33993_jnaat532_1442 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2457-6794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2457-6794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2457-6794&client=summon |