Research on Quality Monitoring Platform and Resource Scheduling Algorithm Based On Machine Vision
The quality monitoring platform and resource scheduling algorithm based on machine vision are currently the research areas of concern in the manufacturing and logistics industries. It is targeted to the industry and the actual production environment with the combination of manufacturing enterprises....
Uloženo v:
| Vydáno v: | Procedia computer science Ročník 259; s. 1064 - 1071 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
2025
|
| Témata: | |
| ISSN: | 1877-0509, 1877-0509 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The quality monitoring platform and resource scheduling algorithm based on machine vision are currently the research areas of concern in the manufacturing and logistics industries. It is targeted to the industry and the actual production environment with the combination of manufacturing enterprises. It is proposed to apply automated image processing and machine learning algorithms to the quality monitoring platform, which not only improves the inspection accuracy, but also reduces the defect detection cost of the product. To this end, the research in this paper stems from relevant literature and empirical research, focusing on the working principle and key technologies of a quality monitoring platform and resource scheduling algorithm based on machine vision. The research methods mainly include: data acquisition, image processing, feature extraction, classification algorithm research and resource scheduling strategy. The research results show that the quality monitoring platform based on machine vision has high inspection accuracy and stability, and can effectively extract product features and detect defects. At the same time, the resource scheduling algorithm can optimize resource scheduling and human power allocation, improve production efficiency and production consistency. |
|---|---|
| AbstractList | The quality monitoring platform and resource scheduling algorithm based on machine vision are currently the research areas of concern in the manufacturing and logistics industries. It is targeted to the industry and the actual production environment with the combination of manufacturing enterprises. It is proposed to apply automated image processing and machine learning algorithms to the quality monitoring platform, which not only improves the inspection accuracy, but also reduces the defect detection cost of the product. To this end, the research in this paper stems from relevant literature and empirical research, focusing on the working principle and key technologies of a quality monitoring platform and resource scheduling algorithm based on machine vision. The research methods mainly include: data acquisition, image processing, feature extraction, classification algorithm research and resource scheduling strategy. The research results show that the quality monitoring platform based on machine vision has high inspection accuracy and stability, and can effectively extract product features and detect defects. At the same time, the resource scheduling algorithm can optimize resource scheduling and human power allocation, improve production efficiency and production consistency. |
| Author | Han, Wei |
| Author_xml | – sequence: 1 givenname: Wei surname: Han fullname: Han, Wei email: 582008886@qq.com organization: Xi’an Fanyi University, Xi’an 710105, Shaanxi, China |
| BookMark | eNp9kMtOwzAQRS1UJErpF7DxDyTYTpw4Cxal4iUVlffWcuxJ4yq1KztF6t-TUhasmM2dxbmj0TlHI-cdIHRJSUoJLa7W6TZ4HVNGGE9JnpKCnKAxFWWZEE6q0Z_9DE1jXJNhMiEqWo6ReoUIKugWe4dfdqqz_R4_eWd7H6xb4edO9Y0PG6ycwQPrd0EDftMtmF13AGbdaiD7doNvVASDlw4_Kd1aB_jTRuvdBTptVBdh-psT9HF3-z5_SBbL-8f5bJFoRjlJWKYbyDnXjDHFCJiS11plXFWVEDU1BatBNE1dFyLPOOQCSsOBFrQojGgMZBOUHe_q4GMM0MhtsBsV9pISeRAl1_JHlDyIkiSXg6ihdX1swfDal4Ugo7bgNBgbQPfSePtv_xvEO3WQ |
| Cites_doi | 10.1038/s41586-020-2038-x 10.1007/s10462-021-10102-3 10.1109/JIOT.2021.3103110 10.1016/j.inpa.2021.06.003 10.31871/WJRR.13.3.12 10.1007/s12393-022-09307-1 10.1016/j.xphs.2021.09.011 10.1016/j.jksuci.2018.06.006 10.1007/s10694-020-01064-z 10.1016/j.tibtech.2022.03.012 10.1007/s10845-019-01508-6 10.1109/JIOT.2020.2980432 10.1007/s40684-021-00343-6 10.1109/TII.2019.2896357 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procs.2025.04.060 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 1071 |
| ExternalDocumentID | 10_1016_j_procs_2025_04_060 S1877050925011585 |
| GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P RIG ROL SES SSZ 9DU AAYXX CITATION ~HD |
| ID | FETCH-LOGICAL-c2150-23cfe455c222a20ed75bca35a9988b1d62be8ffbb68435e48e7d5e16166d8fde3 |
| ISSN | 1877-0509 |
| IngestDate | Thu Nov 27 00:34:20 EST 2025 Sat Jun 14 16:52:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Quality Monitoring Platform Minimize Cost Machine Vision Resource Scheduling Algorithm |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2150-23cfe455c222a20ed75bca35a9988b1d62be8ffbb68435e48e7d5e16166d8fde3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procs.2025.04.060 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1016_j_procs_2025_04_060 elsevier_sciencedirect_doi_10_1016_j_procs_2025_04_060 |
| PublicationCentury | 2000 |
| PublicationDate | 2025 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhao Yongsheng. Research on Quality Monitoring of Online Teaching in Vocational Colleges and Countermeasures [J]. Journal of Liaoning Normal University (Natural Science Edition), 2022, 24 (4): 64-67 Liu, Zhang, Chen (bib6) 2022; 111 Penumuru, Muthuswamy, Karumbu (bib13) 2020; 31 Spandonidis, Tsantilas, Sedikos (bib7) 2020; 14 Tshering, Tamrakar, Gontia (bib8) 2021; 13 Li, Du (bib18) 2022; 55 Soltani Firouz, Sardari (bib20) 2022; 14 Zhu Yongjun, Cai Binbin, Song Chuping. Construction of a High level Professional Group Practice Teaching Quality Monitoring System Based on Big Data [J]. Jiangsu Vocational Education, 2022, 22 (2): 98-102 Tian, Ma, Yang (bib15) 2022; 9 Geetha, Abhishek, Akshayanat (bib17) 2021; 57 Daniel, Kis, Kontoravdi (bib11) 2022; 40 Omer, Gigoyan, Shaker (bib9) 2021; 9 Ren, Fang, Yan (bib12) 2022; 9 Sun, Li, Wu (bib19) 2019; 15 Habib, Majumder, Jakaria (bib14) 2020; 32 Chen Yulin, Zhao Changjiang, Xie Shou’an. Research on Building a Teaching Quality Monitoring System for Agricultural and Forestry Universities Based on Big Data Technology [J]. China Agricultural Education, 2022, 23 (3): 80-86 Haghi, Neubert, Geissler (bib10) 2020; 7 Mennel, Symonowicz, Wachter (bib16) 2020; 579 Qi, Mingyang, Xilong, Youwen, Binhui (bib1) 2022; 43 Zhang Guozheng, Li Bigao, Liu Yang, Wang Jiangping, Zhou Minglong. Construction and practice of the "531" monitoring system for teaching quality in vocational colleges [J]. Journal of Anhui Vocational and Technical College, 2022, 21 (4): 61-66 10.1016/j.procs.2025.04.060_bib4 10.1016/j.procs.2025.04.060_bib5 Penumuru (10.1016/j.procs.2025.04.060_bib13) 2020; 31 Tian (10.1016/j.procs.2025.04.060_bib15) 2022; 9 Sun (10.1016/j.procs.2025.04.060_bib19) 2019; 15 Qi (10.1016/j.procs.2025.04.060_bib1) 2022; 43 10.1016/j.procs.2025.04.060_bib2 10.1016/j.procs.2025.04.060_bib3 Omer (10.1016/j.procs.2025.04.060_bib9) 2021; 9 Soltani Firouz (10.1016/j.procs.2025.04.060_bib20) 2022; 14 Ren (10.1016/j.procs.2025.04.060_bib12) 2022; 9 Habib (10.1016/j.procs.2025.04.060_bib14) 2020; 32 Liu (10.1016/j.procs.2025.04.060_bib6) 2022; 111 Haghi (10.1016/j.procs.2025.04.060_bib10) 2020; 7 Li (10.1016/j.procs.2025.04.060_bib18) 2022; 55 Mennel (10.1016/j.procs.2025.04.060_bib16) 2020; 579 Geetha (10.1016/j.procs.2025.04.060_bib17) 2021; 57 Spandonidis (10.1016/j.procs.2025.04.060_bib7) 2020; 14 Tshering (10.1016/j.procs.2025.04.060_bib8) 2021; 13 Daniel (10.1016/j.procs.2025.04.060_bib11) 2022; 40 |
| References_xml | – reference: Zhang Guozheng, Li Bigao, Liu Yang, Wang Jiangping, Zhou Minglong. Construction and practice of the "531" monitoring system for teaching quality in vocational colleges [J]. Journal of Anhui Vocational and Technical College, 2022, 21 (4): 61-66 – volume: 14 start-page: 353 year: 2022 end-page: 379 ident: bib20 article-title: Defect detection in fruit and vegetables by using machine vision systems and image processing[J] publication-title: Food Engineering Reviews – volume: 111 start-page: 358 year: 2022 end-page: 367 ident: bib6 article-title: A fully integrated online platform for real time monitoring of multiple product quality attributes in biopharmaceutical processes for monoclonal antibody therapeutics[J] publication-title: Journal of Pharmaceutical Sciences – volume: 14 start-page: 382 year: 2020 end-page: 388 ident: bib7 article-title: A low-cost air quality monitoring internet of things platform[J] publication-title: International Journal of Urban and Civil Engineering – volume: 9 start-page: 661 year: 2022 end-page: 691 ident: bib12 article-title: State of the art in defect detection based on machine vision[J] publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology – volume: 579 start-page: 62 year: 2020 end-page: 66 ident: bib16 article-title: Ultrafast machine vision with 2D material neural network image sensors[J] publication-title: Nature – volume: 9 start-page: 195 year: 2022 end-page: 211 ident: bib15 article-title: Application status and challenges of machine vision in plant factory—A review[J] publication-title: Information Processing in Agriculture – reference: Zhao Yongsheng. Research on Quality Monitoring of Online Teaching in Vocational Colleges and Countermeasures [J]. Journal of Liaoning Normal University (Natural Science Edition), 2022, 24 (4): 64-67 – volume: 13 start-page: 12 year: 2021 end-page: 20 ident: bib8 article-title: IoT-based Platform with Big Data using Apache Kylin: Air Quality Monitoring System (AQMS)[J] publication-title: World Journal of Research and Review – volume: 43 start-page: 83 year: 2022 end-page: 86 ident: bib1 article-title: Research on Artificial Intelligence Real time Monitoring Cloud Platform for Medical Quality and Safety Based on Electronic Medical Record Big Data [J] publication-title: Journal of Medical Informatics – reference: Zhu Yongjun, Cai Binbin, Song Chuping. Construction of a High level Professional Group Practice Teaching Quality Monitoring System Based on Big Data [J]. Jiangsu Vocational Education, 2022, 22 (2): 98-102 – volume: 32 start-page: 300 year: 2020 end-page: 309 ident: bib14 article-title: Machine vision based papaya disease recognition[J] publication-title: Journal of King Saud University-Computer and Information Sciences – reference: Chen Yulin, Zhao Changjiang, Xie Shou’an. Research on Building a Teaching Quality Monitoring System for Agricultural and Forestry Universities Based on Big Data Technology [J]. China Agricultural Education, 2022, 23 (3): 80-86 – volume: 55 start-page: 4077 year: 2022 end-page: 4116 ident: bib18 article-title: Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish[J] publication-title: Artificial Intelligence Review – volume: 7 start-page: 5628 year: 2020 end-page: 5647 ident: bib10 article-title: A flexible and pervasive IoT-based healthcare platform for physiological and environmental parameters monitoring[J] publication-title: IEEE Internet of Things Journal – volume: 15 start-page: 6322 year: 2019 end-page: 6333 ident: bib19 article-title: An effective method of weld defect detection and classification based on machine vision[J] publication-title: IEEE Transactions on Industrial Informatics – volume: 9 start-page: 4065 year: 2021 end-page: 4075 ident: bib9 article-title: Whispering-gallery-mode microwave sensing platform for oil quality control applications[J] publication-title: IEEE Internet of Things Journal – volume: 57 start-page: 591 year: 2021 end-page: 623 ident: bib17 article-title: Machine vision based fire detection techniques: A survey[J] publication-title: Fire technology – volume: 40 start-page: 1213 year: 2022 end-page: 1228 ident: bib11 article-title: Quality by Design for enabling RNA platform production processes[J] publication-title: Trends in Biotechnology – volume: 31 start-page: 1229 year: 2020 end-page: 1241 ident: bib13 article-title: Identification and classification of materials using machine vision and machine learning in the context of industry 4.0[J] publication-title: Journal of Intelligent Manufacturing – volume: 579 start-page: 62 issue: 7797 year: 2020 ident: 10.1016/j.procs.2025.04.060_bib16 article-title: Ultrafast machine vision with 2D material neural network image sensors[J] publication-title: Nature doi: 10.1038/s41586-020-2038-x – volume: 55 start-page: 4077 issue: 5 year: 2022 ident: 10.1016/j.procs.2025.04.060_bib18 article-title: Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish[J] publication-title: Artificial Intelligence Review doi: 10.1007/s10462-021-10102-3 – ident: 10.1016/j.procs.2025.04.060_bib3 – volume: 9 start-page: 4065 issue: 6 year: 2021 ident: 10.1016/j.procs.2025.04.060_bib9 article-title: Whispering-gallery-mode microwave sensing platform for oil quality control applications[J] publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2021.3103110 – ident: 10.1016/j.procs.2025.04.060_bib2 – ident: 10.1016/j.procs.2025.04.060_bib4 – ident: 10.1016/j.procs.2025.04.060_bib5 – volume: 9 start-page: 195 issue: 2 year: 2022 ident: 10.1016/j.procs.2025.04.060_bib15 article-title: Application status and challenges of machine vision in plant factory—A review[J] publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2021.06.003 – volume: 13 start-page: 12 issue: 3 year: 2021 ident: 10.1016/j.procs.2025.04.060_bib8 article-title: IoT-based Platform with Big Data using Apache Kylin: Air Quality Monitoring System (AQMS)[J] publication-title: World Journal of Research and Review doi: 10.31871/WJRR.13.3.12 – volume: 14 start-page: 353 issue: 3 year: 2022 ident: 10.1016/j.procs.2025.04.060_bib20 article-title: Defect detection in fruit and vegetables by using machine vision systems and image processing[J] publication-title: Food Engineering Reviews doi: 10.1007/s12393-022-09307-1 – volume: 111 start-page: 358 issue: 2 year: 2022 ident: 10.1016/j.procs.2025.04.060_bib6 article-title: A fully integrated online platform for real time monitoring of multiple product quality attributes in biopharmaceutical processes for monoclonal antibody therapeutics[J] publication-title: Journal of Pharmaceutical Sciences doi: 10.1016/j.xphs.2021.09.011 – volume: 43 start-page: 83 issue: 6 year: 2022 ident: 10.1016/j.procs.2025.04.060_bib1 article-title: Research on Artificial Intelligence Real time Monitoring Cloud Platform for Medical Quality and Safety Based on Electronic Medical Record Big Data [J] publication-title: Journal of Medical Informatics – volume: 14 start-page: 382 issue: 11 year: 2020 ident: 10.1016/j.procs.2025.04.060_bib7 article-title: A low-cost air quality monitoring internet of things platform[J] publication-title: International Journal of Urban and Civil Engineering – volume: 32 start-page: 300 issue: 3 year: 2020 ident: 10.1016/j.procs.2025.04.060_bib14 article-title: Machine vision based papaya disease recognition[J] publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2018.06.006 – volume: 57 start-page: 591 issue: 2 year: 2021 ident: 10.1016/j.procs.2025.04.060_bib17 article-title: Machine vision based fire detection techniques: A survey[J] publication-title: Fire technology doi: 10.1007/s10694-020-01064-z – volume: 40 start-page: 1213 issue: 10 year: 2022 ident: 10.1016/j.procs.2025.04.060_bib11 article-title: Quality by Design for enabling RNA platform production processes[J] publication-title: Trends in Biotechnology doi: 10.1016/j.tibtech.2022.03.012 – volume: 31 start-page: 1229 issue: 5 year: 2020 ident: 10.1016/j.procs.2025.04.060_bib13 article-title: Identification and classification of materials using machine vision and machine learning in the context of industry 4.0[J] publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-019-01508-6 – volume: 7 start-page: 5628 issue: 6 year: 2020 ident: 10.1016/j.procs.2025.04.060_bib10 article-title: A flexible and pervasive IoT-based healthcare platform for physiological and environmental parameters monitoring[J] publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2020.2980432 – volume: 9 start-page: 661 issue: 2 year: 2022 ident: 10.1016/j.procs.2025.04.060_bib12 article-title: State of the art in defect detection based on machine vision[J] publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-021-00343-6 – volume: 15 start-page: 6322 issue: 12 year: 2019 ident: 10.1016/j.procs.2025.04.060_bib19 article-title: An effective method of weld defect detection and classification based on machine vision[J] publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2896357 |
| SSID | ssj0000388917 |
| Score | 2.3425207 |
| Snippet | The quality monitoring platform and resource scheduling algorithm based on machine vision are currently the research areas of concern in the manufacturing and... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 1064 |
| SubjectTerms | Machine Vision Minimize Cost Quality Monitoring Platform Resource Scheduling Algorithm |
| Title | Research on Quality Monitoring Platform and Resource Scheduling Algorithm Based On Machine Vision |
| URI | https://dx.doi.org/10.1016/j.procs.2025.04.060 |
| Volume | 259 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4VyoFLaXmotBTtobdgybH3MT5SBOIESKWFm-V98RAYBGlFL_3tnX0lUYkQVOrFSlZxNppvM_PNeB6EfFbaOjQkrBBVqQqmpCjAdK6wujYVGBCs6cKwCXlwAKenzVGasXkfxgnIvoeHh-b2v0KNawi2L519AdzjL8UFfI2g4xVhx-uzgM-5dP4xQOyQ8Sv9c0Oq3dFVN_JENVUmxuC9b8aJNieUpm9fneEnR-fXgy9o4czgsPfTic49G_0eCtGn-WyoM8AjFlLT_XSIQTKpE80W1NqJvZiOL8Qq5BjuelTyEjQkSFn4pjHRgMxYS2q1Sp2-o2JEz5NNGVl0OoczFXiMJVx686F9N_WKh060cebAX52xv_p9_bZI45DYAp8jryuJHpLP4Pw9CbX5hjdNmL08_qG5_1TI9Hu012yOMsU7jt-SN8lhoNsR6Hfkle2XyVIexkGTbl4hXcad3vQ04U4nuNOMO0XcacadTnCnY9xpwJ0e9jThTiPuq-Tb3u7xzn6R5mcUGolcWVS1dpZxrpEDdlVpjeRKdzXv0MUGNTSiUhacU0oAkmbLwErDLboAQhhwxtZrZL6_6e17QrnsjAOohVOSlWbYKBQ3MxrA1dxBvU62ssTa29gmpc35g5dtEHDrBdyWrEUBrxORpdqmYxkZXIvn4KkbP_zrjR_Jon8Xg2cbZH5098N-Igv65-ji_m4znJc_SFV6ew |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Quality+Monitoring+Platform+and+Resource+Scheduling+Algorithm+Based+On+Machine+Vision&rft.jtitle=Procedia+computer+science&rft.au=Han%2C+Wei&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=259&rft.spage=1064&rft.epage=1071&rft_id=info:doi/10.1016%2Fj.procs.2025.04.060&rft.externalDocID=S1877050925011585 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |