Conditions for a minimax optimum
This paper derives and discusses necessary conditions for an optimum in nonlinear minimax approximation problems. A straightforward geometrical interpretation is presented. The results may be used to test for convergence in computer-aided network optimization, in tests for optimality in the Chebyshe...
Uloženo v:
| Vydáno v: | IEEE transactions on circuit theory Ročník 18; číslo 4; s. 476 - 479 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.1971
|
| Témata: | |
| ISSN: | 0018-9324 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper derives and discusses necessary conditions for an optimum in nonlinear minimax approximation problems. A straightforward geometrical interpretation is presented. The results may be used to test for convergence in computer-aided network optimization, in tests for optimality in the Chebyshev sense of any given design, and to gain insight which may be helpful in developing minimax approximation algorithms. |
|---|---|
| ISSN: | 0018-9324 |
| DOI: | 10.1109/TCT.1971.1083301 |