Gender Classification on Video Using FaceNet Algorithm and Supervised Machine Learning

Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Computing and Digital System (Jāmiʻat al-Baḥrayn. Markaz al-Nashr al-ʻIlmī) Jg. 11; H. 1; S. 199 - 208
Hauptverfasser: Adhinata, Faisal Dharma, Junaidi, Apri
Format: Journal Article
Sprache:Englisch
Veröffentlicht: University of Bahrain, Deanship of Graduate Studies and Scientific Research 2022
Schlagworte:
ISSN:2210-142X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algorithm for extracting features on the face. However, the processing speed for one image was more than 2 seconds, making it unsuitable for real-time processing using video data. Processing video data requires a fast feature extraction algorithm because video data collects sequential images (frames). Moreover, the gender classification system's success is also measured by its accuracy, consequently it is necessary to choose the correct classification method to divide the two classes of men and women. In this research, we propose the FaceNet algorithm for feature extraction and explore several supervised machine learning methods (KNN, SVM, and Decision tree) appropriate for gender classification on video data. This study used 23,000 training data on each gender. From the experiment, combination of the FaceNet algorithm and KNN method resulted in the best accuracy of 95.75% with a processing speed of 0.059 seconds on each frame. Keywords: Gender Classification; Real-time Processing; FaceNet Algorithm; Supervised Machine Learning
AbstractList Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algorithm for extracting features on the face. However, the processing speed for one image was more than 2 seconds, making it unsuitable for real-time processing using video data. Processing video data requires a fast feature extraction algorithm because video data collects sequential images (frames). Moreover, the gender classification system's success is also measured by its accuracy, consequently it is necessary to choose the correct classification method to divide the two classes of men and women. In this research, we propose the FaceNet algorithm for feature extraction and explore several supervised machine learning methods (KNN, SVM, and Decision tree) appropriate for gender classification on video data. This study used 23,000 training data on each gender. From the experiment, combination of the FaceNet algorithm and KNN method resulted in the best accuracy of 95.75% with a processing speed of 0.059 seconds on each frame. Keywords: Gender Classification; Real-time Processing; FaceNet Algorithm; Supervised Machine Learning
Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algorithm for extracting features on the face. However, the processing speed for one image was more than 2 seconds, making it unsuitable for real-time processing using video data. Processing video data requires a fast feature extraction algorithm because video data collects sequential images (frames). Moreover, the gender classification system's success is also measured by its accuracy, consequently it is necessary to choose the correct classification method to divide the two classes of men and women. In this research, we propose the FaceNet algorithm for feature extraction and explore several supervised machine learning methods (KNN, SVM, and Decision tree) appropriate for gender classification on video data. This study used 23,000 training data on each gender. From the experiment, combination of the FaceNet algorithm and KNN method resulted in the best accuracy of 95.75% with a processing speed of 0.059 seconds on each frame.
Audience Academic
Author Adhinata, Faisal Dharma
Junaidi, Apri
Author_xml – sequence: 1
  givenname: Faisal Dharma
  surname: Adhinata
  fullname: Adhinata, Faisal Dharma
– sequence: 2
  givenname: Apri
  surname: Junaidi
  fullname: Junaidi, Apri
BookMark eNptkEFLAzEQhXOoYK09eg943jaT7GbbYym2ClUP2uJtySaTNmU3W5JV8N8bWi-CzMDA473h8d2Qge88EnIHbAK8nBVTd9QmTgEYgByQIefAMsj5xzUZx3hkjIHIc17IIdmt0RsMdNmoGJ11WvWu8zTtzhns6DY6v6crpfEFe7po9l1w_aGlyhv69nnC8OUiGvqs9MF5pBtUwafELbmyqok4_r0jsl09vC8fs83r-mm52GSaQy6zORZ1zQqW16XhXECtBWiU0iqWo0QrdKkFS-1NrVTSytIiZ3OwzFozk7UYkfvL371qsHLedn1QunVRVws5FyBKzkRyTf5xpTHYOp3YWZf0P4HsEtChizGgrU7BtSp8V8CqM-LqjLi6IBY_A8VyZA
ContentType Journal Article
Copyright COPYRIGHT 2022 University of Bahrain, Deanship of Graduate Studies and Scientific Research
Copyright_xml – notice: COPYRIGHT 2022 University of Bahrain, Deanship of Graduate Studies and Scientific Research
DBID AAYXX
CITATION
DOI 10.12785/ijcds/110116
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 208
ExternalDocumentID A693137203
10_12785_ijcds_110116
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
IAO
ICD
ITC
IVC
M~E
OK1
ID FETCH-LOGICAL-c2146-9e5bb0504b7d2231bc31ce66fa04e6ef3c7c30210dbaaa0477fe2091f0ffd86b3
ISSN 2210-142X
IngestDate Sat Nov 29 13:18:27 EST 2025
Sat Nov 29 09:58:45 EST 2025
Sat Nov 29 08:05:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2146-9e5bb0504b7d2231bc31ce66fa04e6ef3c7c30210dbaaa0477fe2091f0ffd86b3
OpenAccessLink https://journal.uob.edu.bh:443/bitstream/123456789/4557/1/IJCDS-110116-1570713269.pdf
PageCount 10
ParticipantIDs gale_infotracmisc_A693137203
gale_infotracacademiconefile_A693137203
crossref_primary_10_12785_ijcds_110116
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationTitle International Journal of Computing and Digital System (Jāmiʻat al-Baḥrayn. Markaz al-Nashr al-ʻIlmī)
PublicationYear 2022
Publisher University of Bahrain, Deanship of Graduate Studies and Scientific Research
Publisher_xml – name: University of Bahrain, Deanship of Graduate Studies and Scientific Research
SSID ssj0001344256
Score 2.2299352
Snippet Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is...
SourceID gale
crossref
SourceType Aggregation Database
Index Database
StartPage 199
SubjectTerms Algorithms
Equipment and supplies
Image processing
Machine learning
Machine vision
Title Gender Classification on Video Using FaceNet Algorithm and Supervised Machine Learning
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2210-142X
  databaseCode: DOA
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0001344256
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2210-142X
  databaseCode: M~E
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0001344256
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FwAEOiE-1UKo9YDhEpvG3fbRLI0AQIVGi3qz1ejc1ipzISarCgR_HL2Nmd504hEM5IEWWZTtjxfM08zyZnUfISwh6ErJSafsRVqu4K2wmsWmcATmPAkhxSj9l8jEaj-OLi-Rzr_erXQtzNYvqOr6-Thb_1dVwDJyNS2f_wd0bo3AA9sHpsAW3w_ZGjtficFrtEvuADCesB5OqFPOB7hEYMS7GYjVIZ9N5U60utVDGl_UCQ8dSYO8FNlmKdv7qtEti96uIhtJqiYh22ePbaoqKJGYoOlLZD4bIVtZpamUZw3KznTHrzLGy2EqDhn2v36jlQ-wHnhqz5WWDO_r69zNFgdOsW74oUQBcU-ARq5YYxdU07k1r0LpmVal6FtJFU3WrHG6n5Om62D_iK9H1bcx29rCpA7Cj5ZZMLnfVzIj9NOFGMY7UqL7xcomlCwf_jtpmxLYL4I9EuWlfxBcnNJErA7n--i1y242CBNsKP_3s1Pk8H8Ki0jhsf4gZ9YoWTpSFE21hhxr12-ZMQ3XOH5D7xqE01dh6SHqifkTudSZXPiYTjTK6izIKH4UyqlBGDcroBmUUcEG3KKMGZbRF2RPydXR2fvrONhIdNkdFeDsRQVEMg6FfRCUQTafgnsNFGEo29EUopMcj7mFZoSwYg2NRJIULFFUOpSzjsPCekn49r8UBoS6TgXQCJkMu_DDxEwZvxkkshyzxRCK8Q_KqfTr5Qk9iyf_qiEPyGp9djh5fNYwzs9AEboOzzvI0TDwHxZnA5NHOlRBZeef0s5ve8Tm5i5jVlbkj0l81a_GC3OFXq2rZHKsyz7FCxW8DepcT
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gender+Classification+on+Video+Using+FaceNet+Algorithm+and+Supervised+Machine+Learning&rft.jtitle=International+Journal+of+Computing+and+Digital+System+%28J%C4%81mi%CA%BBat+al-Ba%E1%B8%A5rayn.+Markaz+al-Nashr+al-%CA%BBIlm%C4%AB%29&rft.au=Adhinata%2C+Faisal+Dharma&rft.au=Junaidi%2C+Apri&rft.date=2022&rft.issn=2210-142X&rft.volume=11&rft.issue=1&rft.spage=199&rft.epage=208&rft_id=info:doi/10.12785%2Fijcds%2F110116&rft.externalDBID=n%2Fa&rft.externalDocID=10_12785_ijcds_110116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-142X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-142X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-142X&client=summon