Gender Classification on Video Using FaceNet Algorithm and Supervised Machine Learning
Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algori...
Gespeichert in:
| Veröffentlicht in: | International Journal of Computing and Digital System (Jāmiʻat al-Baḥrayn. Markaz al-Nashr al-ʻIlmī) Jg. 11; H. 1; S. 199 - 208 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
University of Bahrain, Deanship of Graduate Studies and Scientific Research
2022
|
| Schlagworte: | |
| ISSN: | 2210-142X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algorithm for extracting features on the face. However, the processing speed for one image was more than 2 seconds, making it unsuitable for real-time processing using video data. Processing video data requires a fast feature extraction algorithm because video data collects sequential images (frames). Moreover, the gender classification system's success is also measured by its accuracy, consequently it is necessary to choose the correct classification method to divide the two classes of men and women. In this research, we propose the FaceNet algorithm for feature extraction and explore several supervised machine learning methods (KNN, SVM, and Decision tree) appropriate for gender classification on video data. This study used 23,000 training data on each gender. From the experiment, combination of the FaceNet algorithm and KNN method resulted in the best accuracy of 95.75% with a processing speed of 0.059 seconds on each frame. Keywords: Gender Classification; Real-time Processing; FaceNet Algorithm; Supervised Machine Learning |
|---|---|
| AbstractList | Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algorithm for extracting features on the face. However, the processing speed for one image was more than 2 seconds, making it unsuitable for real-time processing using video data. Processing video data requires a fast feature extraction algorithm because video data collects sequential images (frames). Moreover, the gender classification system's success is also measured by its accuracy, consequently it is necessary to choose the correct classification method to divide the two classes of men and women. In this research, we propose the FaceNet algorithm for feature extraction and explore several supervised machine learning methods (KNN, SVM, and Decision tree) appropriate for gender classification on video data. This study used 23,000 training data on each gender. From the experiment, combination of the FaceNet algorithm and KNN method resulted in the best accuracy of 95.75% with a processing speed of 0.059 seconds on each frame. Keywords: Gender Classification; Real-time Processing; FaceNet Algorithm; Supervised Machine Learning Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is biometric information that can be used to differentiate gender using a computer-aided system. Previous research utilised a local feature algorithm for extracting features on the face. However, the processing speed for one image was more than 2 seconds, making it unsuitable for real-time processing using video data. Processing video data requires a fast feature extraction algorithm because video data collects sequential images (frames). Moreover, the gender classification system's success is also measured by its accuracy, consequently it is necessary to choose the correct classification method to divide the two classes of men and women. In this research, we propose the FaceNet algorithm for feature extraction and explore several supervised machine learning methods (KNN, SVM, and Decision tree) appropriate for gender classification on video data. This study used 23,000 training data on each gender. From the experiment, combination of the FaceNet algorithm and KNN method resulted in the best accuracy of 95.75% with a processing speed of 0.059 seconds on each frame. |
| Audience | Academic |
| Author | Adhinata, Faisal Dharma Junaidi, Apri |
| Author_xml | – sequence: 1 givenname: Faisal Dharma surname: Adhinata fullname: Adhinata, Faisal Dharma – sequence: 2 givenname: Apri surname: Junaidi fullname: Junaidi, Apri |
| BookMark | eNptkEFLAzEQhXOoYK09eg943jaT7GbbYym2ClUP2uJtySaTNmU3W5JV8N8bWi-CzMDA473h8d2Qge88EnIHbAK8nBVTd9QmTgEYgByQIefAMsj5xzUZx3hkjIHIc17IIdmt0RsMdNmoGJ11WvWu8zTtzhns6DY6v6crpfEFe7po9l1w_aGlyhv69nnC8OUiGvqs9MF5pBtUwafELbmyqok4_r0jsl09vC8fs83r-mm52GSaQy6zORZ1zQqW16XhXECtBWiU0iqWo0QrdKkFS-1NrVTSytIiZ3OwzFozk7UYkfvL371qsHLedn1QunVRVws5FyBKzkRyTf5xpTHYOp3YWZf0P4HsEtChizGgrU7BtSp8V8CqM-LqjLi6IBY_A8VyZA |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 University of Bahrain, Deanship of Graduate Studies and Scientific Research |
| Copyright_xml | – notice: COPYRIGHT 2022 University of Bahrain, Deanship of Graduate Studies and Scientific Research |
| DBID | AAYXX CITATION |
| DOI | 10.12785/ijcds/110116 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 208 |
| ExternalDocumentID | A693137203 10_12785_ijcds_110116 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ IAO ICD ITC IVC M~E OK1 |
| ID | FETCH-LOGICAL-c2146-9e5bb0504b7d2231bc31ce66fa04e6ef3c7c30210dbaaa0477fe2091f0ffd86b3 |
| ISSN | 2210-142X |
| IngestDate | Sat Nov 29 13:18:27 EST 2025 Sat Nov 29 09:58:45 EST 2025 Sat Nov 29 08:05:06 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2146-9e5bb0504b7d2231bc31ce66fa04e6ef3c7c30210dbaaa0477fe2091f0ffd86b3 |
| OpenAccessLink | https://journal.uob.edu.bh:443/bitstream/123456789/4557/1/IJCDS-110116-1570713269.pdf |
| PageCount | 10 |
| ParticipantIDs | gale_infotracmisc_A693137203 gale_infotracacademiconefile_A693137203 crossref_primary_10_12785_ijcds_110116 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | International Journal of Computing and Digital System (Jāmiʻat al-Baḥrayn. Markaz al-Nashr al-ʻIlmī) |
| PublicationYear | 2022 |
| Publisher | University of Bahrain, Deanship of Graduate Studies and Scientific Research |
| Publisher_xml | – name: University of Bahrain, Deanship of Graduate Studies and Scientific Research |
| SSID | ssj0001344256 |
| Score | 2.2299352 |
| Snippet | Gender classification using human face data becomes a trending topic for researchers in the field of image processing and computer vision. The human face is... |
| SourceID | gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 199 |
| SubjectTerms | Algorithms Equipment and supplies Image processing Machine learning Machine vision |
| Title | Gender Classification on Video Using FaceNet Algorithm and Supervised Machine Learning |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2210-142X databaseCode: DOA dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0001344256 providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2210-142X databaseCode: M~E dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssj0001344256 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FwAEOiE-1UKo9YDhEpvG3fbRLI0AQIVGi3qz1ejc1ipzISarCgR_HL2Nmd504hEM5IEWWZTtjxfM08zyZnUfISwh6ErJSafsRVqu4K2wmsWmcATmPAkhxSj9l8jEaj-OLi-Rzr_erXQtzNYvqOr6-Thb_1dVwDJyNS2f_wd0bo3AA9sHpsAW3w_ZGjtficFrtEvuADCesB5OqFPOB7hEYMS7GYjVIZ9N5U60utVDGl_UCQ8dSYO8FNlmKdv7qtEti96uIhtJqiYh22ePbaoqKJGYoOlLZD4bIVtZpamUZw3KznTHrzLGy2EqDhn2v36jlQ-wHnhqz5WWDO_r69zNFgdOsW74oUQBcU-ARq5YYxdU07k1r0LpmVal6FtJFU3WrHG6n5Om62D_iK9H1bcx29rCpA7Cj5ZZMLnfVzIj9NOFGMY7UqL7xcomlCwf_jtpmxLYL4I9EuWlfxBcnNJErA7n--i1y242CBNsKP_3s1Pk8H8Ki0jhsf4gZ9YoWTpSFE21hhxr12-ZMQ3XOH5D7xqE01dh6SHqifkTudSZXPiYTjTK6izIKH4UyqlBGDcroBmUUcEG3KKMGZbRF2RPydXR2fvrONhIdNkdFeDsRQVEMg6FfRCUQTafgnsNFGEo29EUopMcj7mFZoSwYg2NRJIULFFUOpSzjsPCekn49r8UBoS6TgXQCJkMu_DDxEwZvxkkshyzxRCK8Q_KqfTr5Qk9iyf_qiEPyGp9djh5fNYwzs9AEboOzzvI0TDwHxZnA5NHOlRBZeef0s5ve8Tm5i5jVlbkj0l81a_GC3OFXq2rZHKsyz7FCxW8DepcT |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gender+Classification+on+Video+Using+FaceNet+Algorithm+and+Supervised+Machine+Learning&rft.jtitle=International+Journal+of+Computing+and+Digital+System+%28J%C4%81mi%CA%BBat+al-Ba%E1%B8%A5rayn.+Markaz+al-Nashr+al-%CA%BBIlm%C4%AB%29&rft.au=Adhinata%2C+Faisal+Dharma&rft.au=Junaidi%2C+Apri&rft.date=2022&rft.issn=2210-142X&rft.volume=11&rft.issue=1&rft.spage=199&rft.epage=208&rft_id=info:doi/10.12785%2Fijcds%2F110116&rft.externalDBID=n%2Fa&rft.externalDocID=10_12785_ijcds_110116 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-142X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-142X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-142X&client=summon |