Optimal Beamforming for Multi-User Continuous Aperture Array (CAPA) Systems

The optimal beamforming design for multi-user continuous aperture array (CAPA) systems is proposed. In contrast to conventional spatially discrete array (SPDA), the beamformer for CAPA is a continuous function rather than a discrete vector or matrix, rendering beamforming optimization a non-convex i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 73; číslo 10; s. 9207 - 9221
Hlavní autoři: Wang, Zhaolin, Ouyang, Chongjun, Liu, Yuanwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The optimal beamforming design for multi-user continuous aperture array (CAPA) systems is proposed. In contrast to conventional spatially discrete array (SPDA), the beamformer for CAPA is a continuous function rather than a discrete vector or matrix, rendering beamforming optimization a non-convex integral-based functional programming. To address this challenging issue, the closed-form optimal structure of the CAPA beamformer is first derived for maximizing generic system utility functions, by addressing the inversion of continuous functions and using the Lagrangian duality and the calculus of variations. The derived optimal structure is a linear combination of the continuous channel responses for CAPA, with the linear weights determined by the channel correlations. As a further advance, a monotonic optimization method is proposed for obtaining globally optimal CAPA beamforming based on the derived optimal structure. More particularly, a closed-form fixed-point iteration is proposed to obtain the globally optimal solution to the power minimization problem for CAPA beamforming. Furthermore, based on the optimal structure, the low-complexity maximum ratio transmission (MRT), zero-forcing (ZF), and minimum mean-squared error (MMSE) designs for CAPA beamforming are derived. It is theoretically proved that: 1) the MRT and ZF designs are asymptotically optimal in low and high signal-to-noise ratio (SNR) regimes, respectively, and 2) the MMSE design is optimal for signal-to-leakage-plus-noise ratio (SLNR) maximization. Our numerical results validate the effectiveness of the proposed designs and reveal that: i) CAPA achieves significant communication performance gain over SPDA, and ii) the MMSE design achieves nearly optimal performance in most cases, while the MRT and ZF designs achieve nearly optimal performance in specific cases.
AbstractList The optimal beamforming design for multi-user continuous aperture array (CAPA) systems is proposed. In contrast to conventional spatially discrete array (SPDA), the beamformer for CAPA is a continuous function rather than a discrete vector or matrix, rendering beamforming optimization a non-convex integral-based functional programming. To address this challenging issue, the closed-form optimal structure of the CAPA beamformer is first derived for maximizing generic system utility functions, by addressing the inversion of continuous functions and using the Lagrangian duality and the calculus of variations. The derived optimal structure is a linear combination of the continuous channel responses for CAPA, with the linear weights determined by the channel correlations. As a further advance, a monotonic optimization method is proposed for obtaining globally optimal CAPA beamforming based on the derived optimal structure. More particularly, a closed-form fixed-point iteration is proposed to obtain the globally optimal solution to the power minimization problem for CAPA beamforming. Furthermore, based on the optimal structure, the low-complexity maximum ratio transmission (MRT), zero-forcing (ZF), and minimum mean-squared error (MMSE) designs for CAPA beamforming are derived. It is theoretically proved that: 1) the MRT and ZF designs are asymptotically optimal in low and high signal-to-noise ratio (SNR) regimes, respectively, and 2) the MMSE design is optimal for signal-to-leakage-plus-noise ratio (SLNR) maximization. Our numerical results validate the effectiveness of the proposed designs and reveal that: i) CAPA achieves significant communication performance gain over SPDA, and ii) the MMSE design achieves nearly optimal performance in most cases, while the MRT and ZF designs achieve nearly optimal performance in specific cases.
Author Ouyang, Chongjun
Liu, Yuanwei
Wang, Zhaolin
Author_xml – sequence: 1
  givenname: Zhaolin
  orcidid: 0000-0003-4614-0175
  surname: Wang
  fullname: Wang, Zhaolin
  email: zhaolin.wang@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 2
  givenname: Chongjun
  orcidid: 0000-0003-1293-1104
  surname: Ouyang
  fullname: Ouyang, Chongjun
  email: c.ouyang@qmul.ac.uk
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K
– sequence: 3
  givenname: Yuanwei
  orcidid: 0000-0002-6389-8941
  surname: Liu
  fullname: Liu, Yuanwei
  email: yuanwei@hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Kowloon Tong, Hong Kong
BookMark eNp9kLtOwzAUhi1UJNrCCyCGSCwwpPgSO84YIm6iVZFoZ8tJjlGq3LCdoW9PShkQA9NZ_u_853wzNGm7FhC6JHhBCE7uNtl6tVpQTPmCcR6JKDpBU8K5DLHk8QRNMU5wKOJYnqGZczuMcYQZm6LXde-rRtfBPejGdLap2o9gnMFqqH0Vbh3YIOtaX7VDN7gg7cH6wUKQWqv3wU2WvqW3wfveeWjcOTo1unZw8TPnaPv4sMmew-X66SVLl2FBCfMhGENMXEacFZqCpGCi8UgoAbAgWkCZAy4hlzFwxkmpcVHkNI4IzZNIUMPZHF0f9_a2-xzAebXrBtuOlYpRIbgggrExRY-pwnbOWTCqt-Ondq8IVgdp6luaOkhTP9JGSP6BisprX40GrK7q_9GrI1oBwK-uhEkRS_YFZKR8ew
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_MWC_001_2400493
Cites_doi 10.1109/JSSC.1968.1049891
10.1561/1300000038
10.1109/TWC.2022.3208961
10.1109/twc.2025.3545770
10.1109/JSAC.2023.3288244
10.1109/MSP.2010.936015
10.1109/TSP.2003.815393
10.1109/8.29386
10.1109/TIT.2017.2786674
10.1109/JSAC.2022.3196106
10.1109/ACCESS.2021.3133707
10.1109/TWC.2024.3429495
10.1109/COMST.2023.3309529
10.1109/TVT.2024.3455249
10.1109/TAP.1965.1138456
10.1561/0100000069
10.1364/AO.39.001681
10.1109/LCOMM.2023.3329134
10.1109/JPROC.2024.3436513
10.1109/MWC.001.2000267
10.1109/TSP.2005.861073
10.1109/MWC.001.1900534
10.1109/OJCOMS.2023.3305583
10.1109/TSP.2018.2816577
10.1109/LWC.2023.3317492
10.1109/twc.2025.3579677
10.1109/JSAC.2020.3000877
10.1109/JSAC.2014.2328098
10.1109/TAP.2007.915416
10.1109/JSAC.2020.3007036
10.1109/ojcoms.2025.3576931
10.1109/TAP.2018.2889158
10.1109/TAP.2023.3234164
10.1109/TCOMM.2023.3247725
10.1109/MSP.2014.2312183
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2025.3554644
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 9221
ExternalDocumentID 10_1109_TCOMM_2025_3554644
10938678
Genre orig-research
GrantInformation_xml – fundername: U.K. Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/Z003091/1
– fundername: Marie Skłodowska-Curie Actions (MSCA) Postdoctoral Fellowship
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c213t-eff1f7d453ca2e82ef4085edee061a6edbe0deb87e5351da0ccb27412b9462f53
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Thu Oct 30 00:12:07 EDT 2025
Sat Nov 29 06:56:59 EST 2025
Tue Nov 18 20:57:54 EST 2025
Wed Nov 05 07:09:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c213t-eff1f7d453ca2e82ef4085edee061a6edbe0deb87e5351da0ccb27412b9462f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1293-1104
0000-0002-6389-8941
0000-0003-4614-0175
PQID 3266561633
PQPubID 85472
PageCount 15
ParticipantIDs proquest_journals_3266561633
crossref_primary_10_1109_TCOMM_2025_3554644
ieee_primary_10938678
crossref_citationtrail_10_1109_TCOMM_2025_3554644
PublicationCentury 2000
PublicationDate 2025-Oct.
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-Oct.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
Guo (ref31) 2024
ref20
ref22
ref21
ref28
ref27
Orfanidis (ref36) 2008
ref29
ref8
ref7
ref9
ref4
ref3
Liu (ref35) 2024
ref6
ref5
Olver (ref39) 2010
ref40
Ouyang (ref25) 2024
References_xml – ident: ref4
  doi: 10.1109/JSSC.1968.1049891
– ident: ref37
  doi: 10.1561/1300000038
– ident: ref24
  doi: 10.1109/TWC.2022.3208961
– ident: ref30
  doi: 10.1109/twc.2025.3545770
– ident: ref28
  doi: 10.1109/JSAC.2023.3288244
– ident: ref32
  doi: 10.1109/MSP.2010.936015
– ident: ref34
  doi: 10.1109/TSP.2003.815393
– ident: ref13
  doi: 10.1109/8.29386
– ident: ref19
  doi: 10.1109/TIT.2017.2786674
– ident: ref16
  doi: 10.1109/JSAC.2022.3196106
– year: 2024
  ident: ref31
  article-title: Deep learning for beamforming in multi-user continuous aperture array (CAPA) systems
  publication-title: arXiv:2411.09104
– ident: ref15
  doi: 10.1109/ACCESS.2021.3133707
– ident: ref29
  doi: 10.1109/TWC.2024.3429495
– ident: ref9
  doi: 10.1109/COMST.2023.3309529
– ident: ref26
  doi: 10.1109/TVT.2024.3455249
– ident: ref3
  doi: 10.1109/TAP.1965.1138456
– ident: ref38
  doi: 10.1561/0100000069
– year: 2024
  ident: ref35
  article-title: CAPA: Continuous-aperture arrays for revolutionizing 6G wireless communications
  publication-title: arXiv:2412.00894
– ident: ref14
  doi: 10.1364/AO.39.001681
– ident: ref21
  doi: 10.1109/LCOMM.2023.3329134
– ident: ref2
  doi: 10.1109/JPROC.2024.3436513
– ident: ref12
  doi: 10.1109/MWC.001.2000267
– ident: ref40
  doi: 10.1109/TSP.2005.861073
– ident: ref7
  doi: 10.1109/MWC.001.1900534
– volume-title: NIST Handbook of Mathematical Functions
  year: 2010
  ident: ref39
– ident: ref1
  doi: 10.1109/OJCOMS.2023.3305583
– ident: ref10
  doi: 10.1109/TSP.2018.2816577
– volume-title: Electromagnetic Waves and Antennas
  year: 2008
  ident: ref36
– ident: ref17
  doi: 10.1109/LWC.2023.3317492
– ident: ref27
  doi: 10.1109/twc.2025.3579677
– ident: ref8
  doi: 10.1109/JSAC.2020.3000877
– ident: ref5
  doi: 10.1109/JSAC.2014.2328098
– year: 2024
  ident: ref25
  article-title: Diversity and multiplexing for continuous aperture array (CAPA)-based communications
  publication-title: arXiv:2408.13948
– ident: ref18
  doi: 10.1109/TAP.2007.915416
– ident: ref11
  doi: 10.1109/JSAC.2020.3007036
– ident: ref6
  doi: 10.1109/ojcoms.2025.3576931
– ident: ref20
  doi: 10.1109/TAP.2018.2889158
– ident: ref23
  doi: 10.1109/TAP.2023.3234164
– ident: ref22
  doi: 10.1109/TCOMM.2023.3247725
– ident: ref33
  doi: 10.1109/MSP.2014.2312183
SSID ssj0004033
Score 2.5363429
Snippet The optimal beamforming design for multi-user continuous aperture array (CAPA) systems is proposed. In contrast to conventional spatially discrete array...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9207
SubjectTerms Apertures
Array signal processing
Arrays
Beamforming
Calculus
Calculus of variations
Closed form solutions
Continuity (mathematics)
Continuous aperture array (CAPA)
Exact solutions
Fixed points (mathematics)
Functional programming
heuristic beamforming
Interference
Maximization
optimal beamforming
Optimization
Optimization methods
Signal to noise ratio
Surface waves
Symbols
System performance
Uplink
Title Optimal Beamforming for Multi-User Continuous Aperture Array (CAPA) Systems
URI https://ieeexplore.ieee.org/document/10938678
https://www.proquest.com/docview/3266561633
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86fNAHPydOp_TBB0WytUmzpI91OATdx8MmeyttcoWB68a2Cv73JmmnE1HwqaVcjpJL735p7n6H0LUUijGVJJhJoNiPGcUBkBaWQlChI2YKloHv5Zn3emI8DgZlsbqthQEAm3wGDXNrz_LVTObmV1nTUB8J7V230TbnvCjW-iqCdGlJOWny2blYV8i4QXPY7ne7ei9IWMOEVw0BvkUh21blhy-2AaZz8M9XO0T7JZJ0wsL0R2gLsmO0t8EveIKe-tohTLXQPcRTg071U0dfHVt2i0d6-TmGnmqS5bN86YRzWJgDBa1zEb87N-1wEN46Jad5FY06D8P2Iy67J2BJPLrCkKZeypXPqIwJCAKpITMDBaBDeNwClYCrIBEcGGWeil0pE8NlQ5LAb5GU0VNUyWYZnCFHKyAJFW5KROprBYkUsQx8DpITJmJVQ956NiNZUoubDhevkd1iuEFkLRAZC0SlBWro7nPMvCDW-FO6auZ8Q7KY7hqqr60WlR_fMtKIVKNUDTTp-S_DLtCu0V4k5dVRZbXI4RLtyLfVZLm4suvqA0bNysw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkMMBvTAAYS6tUmzpscxMQ3tedgQt6pNXGkSe2gPJP49SdrBEAKJU6vKcSs7tZ3E_gxwI7hkTMaxzQRS24sYtQMkFVtwTrnymAkaBL7nlt_p8JeXoJcVq5taGEQ0yWdY0rfmLF9OxFJvlZU19BFX1nUTtpjnETct1_oqg3RoBjqpM9p9vqqRcYJyv9Ztt9VqkLCSdrAqCPjmh0xjlR_W2LiY-sE_P-4Q9rNY0qqmyj-CDRwfw94awuAJNLvKJIwU0QNGIx2fqqeWulqm8NYeqAloaYCq4Xg5Wc6t6hRn-khB8ZxF79Ztrdqr3lkZqnkeBvXHfq1hZ_0TbEFcurAxSdzElx6jIiLICSYazgwlonLiUQVljI7EmPvIKHNl5AgRazQbEgdehSSMnkJuPBnjGViKAYkpdxLCE08xiAWPROD5KHzCeCQL4K6kGYoMXFz3uHgNzSLDCUKjgVBrIMw0UID7zzHTFFrjT-q8lvkaZSruAhRXWguz328eqphUxakq1KTnvwy7hp1Gv90KW0-d5gXs6jelKXpFyC1mS7yEbfG2GM5nV2aOfQD9384T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Beamforming+for+Multi-User+Continuous+Aperture+Array+%28CAPA%29+Systems&rft.jtitle=IEEE+transactions+on+communications&rft.au=Wang%2C+Zhaolin&rft.au=Ouyang%2C+Chongjun&rft.au=Liu%2C+Yuanwei&rft.date=2025-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=73&rft.issue=10&rft.spage=9207&rft.epage=9221&rft_id=info:doi/10.1109%2FTCOMM.2025.3554644&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon