A special newton-type optimization method
The Kuhn-Tucker conditions of an optimization problem with inequality constraints are transformed equivalently into a special nonlinear system of equations T 0 (z) = 0. It is shown that Newton's method for solving this system combines two valuable properties: The local Q-quadratic convergence w...
Uloženo v:
| Vydáno v: | Optimization Ročník 24; číslo 3-4; s. 269 - 284 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Gordon and Breach Science Publishers
01.01.1992
|
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Kuhn-Tucker conditions of an optimization problem with inequality constraints are transformed equivalently into a special nonlinear system of equations T
0
(z) = 0. It is shown that Newton's method for solving this system combines two valuable properties: The local Q-quadratic convergence without assuming the strict complementary slackness condition and the regularity of the Jacobian of T
0
at a point z under reasonable conditions, so that Newton's method can be used also far from a Kuhn-Tucker point |
|---|---|
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331939208843795 |