Applying reproducing kernels to the evaluation and approximation of the simple and time-dependent imaginary time harmonic oscillator path integrals

Reproduction of kernel Hilbert spaces offers an attractive setting for imaginary time path integrals, since they allow to naturally define a probability on the space of paths, which is equal to the probability associated with the paths in Feynman's path integral formulation. This study shows th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applicable analysis Ročník 85; číslo 6-7; s. 793 - 810
Hlavný autor: Keren, Daniel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis Group 01.06.2006
Predmet:
ISSN:0003-6811, 1563-504X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reproduction of kernel Hilbert spaces offers an attractive setting for imaginary time path integrals, since they allow to naturally define a probability on the space of paths, which is equal to the probability associated with the paths in Feynman's path integral formulation. This study shows that if the propagator is Gaussian, its variance equals the squared norm of a linear functional on the space of paths. This can be used to rederive the harmonic oscillator propagator, as well as to offer a finite-dimensional perturbative approximation scheme for the time-dependent oscillator wave function and its ground state energy, and its bound error. The error is related to the rate of decay of the Fourier coefficients of the time-dependent part of the potential. When the rate of decay increases beyond a certain threshold, the error in the approximation over a subspace of dimension n is of order (1/n 3 ).
AbstractList Reproduction of kernel Hilbert spaces offers an attractive setting for imaginary time path integrals, since they allow to naturally define a probability on the space of paths, which is equal to the probability associated with the paths in Feynman's path integral formulation. This study shows that if the propagator is Gaussian, its variance equals the squared norm of a linear functional on the space of paths. This can be used to rederive the harmonic oscillator propagator, as well as to offer a finite-dimensional perturbative approximation scheme for the time-dependent oscillator wave function and its ground state energy, and its bound error. The error is related to the rate of decay of the Fourier coefficients of the time-dependent part of the potential. When the rate of decay increases beyond a certain threshold, the error in the approximation over a subspace of dimension n is of order (1/n 3 ).
Author Keren, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Keren
  fullname: Keren, Daniel
  email: dkeren@cs.haifa.ac.il
  organization: Department of Computer Science , Haifa University
BookMark eNqFkM9KAzEQxoNUsFYfwFteYHWy2eyu4EXEf1DwouBticmkjWaTJYnaPocv7Lb1JuJphvm-38zwHZKJDx4JOWFwyqCFMwDgdcugBmhKUZ6LPTJlouaFgOp5QqYbvRgN7IAcpvQKwMpW1FPydTkMbm39gkYcYtDvatO_YfToEs2B5iVS_JDuXWYbPJVeUzmMzpXtd5Ngtp5k-8HhVs-2x0LjgF6jz3Q0LqyXcb0V6FLGPniraEjKOidziHSQeUmtz7iI0qUjsm_Ggsc_dUaebq4fr-6K-cPt_dXlvFAl47mo8bxVtYS6LF-ERtZAy5BJprRquamMkKxqZKW5MaBAN6bk4oXVDDSvWhAVnxG226tiSCmi6YY4PhvXHYNuk2r3K9WRaXaM9SbEXn6G6HSX5dqFaKL0yqbfVJdXeSQv_iX534e_Ac7mlUI
Cites_doi 10.1103/PhysRevLett.55.1
10.1063/1.1595640
10.1216/RMJ-1972-2-3-379
10.1007/BFb0109520
10.1016/S0021-9991(02)00066-9
10.1063/1.1509058
10.1088/0305-4470/36/8/305
10.1006/jcph.2000.6599
10.1006/jcph.1993.1013
10.1063/1.2914703
10.1063/1.446919
10.1063/1.478520
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2006
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2006
DBID AAYXX
CITATION
DOI 10.1080/00036810600725295
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1563-504X
EndPage 810
ExternalDocumentID 10_1080_00036810600725295
172493
GroupedDBID --Z
-~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~S~
07G
1TA
6TJ
AAIKQ
AAKBW
AAYXX
ACGEE
ACTCW
AEUMN
AFFNX
AGCQS
AGLEN
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
H~9
IVXBP
LJTGL
NUSFT
TAQ
TFMCV
UB9
UU8
V3K
V4Q
ZY4
ID FETCH-LOGICAL-c213t-6e98c6a0622b5de17081e1a1cdc83f4f5a147a4d3ff0c0d7f235b1610d3480543
IEDL.DBID TFW
ISSN 0003-6811
IngestDate Sat Nov 29 03:58:57 EST 2025
Mon May 13 12:10:01 EDT 2019
Mon Oct 20 23:44:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6-7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c213t-6e98c6a0622b5de17081e1a1cdc83f4f5a147a4d3ff0c0d7f235b1610d3480543
PageCount 18
ParticipantIDs crossref_primary_10_1080_00036810600725295
informaworld_taylorfrancis_310_1080_00036810600725295
PublicationCentury 2000
PublicationDate 6/1/2006
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 6/1/2006
  day: 01
PublicationDecade 2000
PublicationTitle Applicable analysis
PublicationYear 2006
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT0010
CIT0012
Saitoh S (CIT0004) 2003; 1
CIT0011
Feynman RP (CIT0001) 1965
Schulman LS (CIT0003) 1981
Grosche S (CIT0002) 1998; 145
CIT0014
CIT0013
CIT0005
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1103/PhysRevLett.55.1
– ident: CIT0013
  doi: 10.1063/1.1595640
– ident: CIT0005
  doi: 10.1216/RMJ-1972-2-3-379
– volume: 145
  volume-title: Handbook of Feynman Path Integrals, Springer Tracts in Modern Physics
  year: 1998
  ident: CIT0002
  doi: 10.1007/BFb0109520
– ident: CIT0007
  doi: 10.1016/S0021-9991(02)00066-9
– volume: 1
  start-page: 131
  year: 2003
  ident: CIT0004
  publication-title: Journal of Analysis and Applications
– ident: CIT0012
  doi: 10.1063/1.1509058
– ident: CIT0014
  doi: 10.1088/0305-4470/36/8/305
– ident: CIT0011
  doi: 10.1006/jcph.2000.6599
– ident: CIT0008
  doi: 10.1006/jcph.1993.1013
– volume-title: Quantum Mechanics and Path Integrals
  year: 1965
  ident: CIT0001
– volume-title: Techniques and Applications of Path Integration
  year: 1981
  ident: CIT0003
  doi: 10.1063/1.2914703
– ident: CIT0009
  doi: 10.1063/1.446919
– ident: CIT0010
  doi: 10.1063/1.478520
SSID ssj0012856
Score 1.6388614
Snippet Reproduction of kernel Hilbert spaces offers an attractive setting for imaginary time path integrals, since they allow to naturally define a probability on the...
SourceID crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 793
SubjectTerms Finite-dimensional approximation
General mathematical topics and methods in quantum theory 81Q30 (Feynman integrals)
Imaginary time
Mathematics Subject Classifications: Numerical analysis 65Z05 (applications to physics)
Path integral
Reproducing kernels
Time-dependent harmonic oscillator
Title Applying reproducing kernels to the evaluation and approximation of the simple and time-dependent imaginary time harmonic oscillator path integrals
URI https://www.tandfonline.com/doi/abs/10.1080/00036810600725295
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1563-504X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012856
  issn: 0003-6811
  databaseCode: TFW
  dateStart: 19710401
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCDDA96cDoV5xc5eBKCTdOP9Cji8KDDw8TdSpomMpRO2ij7P_yHzUvbufl10EOhkJc0NB_vJS_5PYROKJMsyjxOQk0VCWIeEG4VJRGSiyTMY_u4lr6Oh0M-Hie3zdmcqjlWCWtoXYMi3FwNg1tkVXsi7sxBVLhdywD2GhxVdga2ah_iF4wG93Mfgs9d7FaQJlactj7N70pY0kpLzNIFbTPo_rOem2ijMTPxed0vttCKKnqo25icuBnQVQ-t38yxrdU2egMBuPeEgXUJKFh4f1RlYTUoNlNsZfEHHxzbmmEHJZ9N6huQeKqdTDUB6LBLh-D1pA21a7AVfHBXgF0CBnA2wHkxMDVtjzTTEkOQZNxgLJ6qHXQ3uBxdXJEmagORPmWGRCrhMhJe5PtZmCsaW6NDUUFlLjnTgQ4FDWIR5ExrT3p5rH0WZtbu9HIWcGtAsl3UKaaF2kOYRrYcDsi2SAZhoIQ1z3gmWJL5SZxHeR-dtq2WPtdwjpTOmaeffn4feYvtmhq3I6Lr8CVfxVMzM30U_pKF_fip_T_mO0Br9Q4PbPIcoo4pX9QRWpWvZlKVx653vwMIX_k0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEIAHX6AefIvrMwdPQrBp-kiPIi6Ku4uHFb2VNk1kUXZlG8X_4R82k3ZX19dBD4VCJ2loJp3JJPkG4JBxyaPcEzTUTNEgFgEV1lDSTIosCYvYXq6nW3GnI25vk6s64FbW2ypxDq0rUIT7V-PgxmD0aEvcsaOoCDuZQe41rlRNw2xo7SxqeLd5M15F8IXL3ori1Mqz0armd1VM2KUJaukHe9Nc_m9LV2Cp9jTJSaUaqzCl-muwXHudpB7T5Rostsfk1nIdXlEAjz4RxF0iDRbv79Wwb40oMQNiZck7IpzYphHHJX_pVYcgyUA7mbKH3GH3HPPX01G2XUOs4J07BeweEGRnI5-XIFbTKqUZDAnmSSY1yeKh3IDr5ln39JzWiRuo9Bk3NFKJkFHmRb6fh4VisfU7FMuYLKTgOtBhxoI4CwqutSe9ItY-D3PrenoFD4T1IfkmzPQHfbUFhEW2HoHUtkgGYaAy66GJPONJ7idxERUNOBp1W_pY8TlSNsaefvr4DfA-dmxqXFBEVxlMvoqn5sU0IPylCP_xVdt_LHcA8-fddittXXQud2ChCvhgzGcXZszwSe3BnHw2vXK471T9DcpR_V8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHPCpEDyzdgthSig-ckCziOA_nWEGjImC1B1C5RYkf1apoF20M4nvwhetxku1SCodyiBQpfztWbGfGr98AHDAueVIFgsaGaRqlIqLCGUpaSlFmsUrd5Wv6PB0OxfV1Nmr35tTttkocQ5sGFOH_1di5b5XpdsQdeYiKcGMZxF7jQtUyrDq3OcGx12X-Y76IEAofvBXl1OlZt6j5ryyemKUn0NIFc5P33ljQTdho_UzytWkYH2BJT_rQa31O0vboug_vL-bc1vojPKIADz4RhF0iCxbvf-nZxJlQYqfEackfQDhxJSOeSv4wbo5AkqnxmnqM1GH_HKPX0y7WriVO-NOfAfYPCJKzkc5LEKrpmqSdzghGSSYtx-Km3oKr_Nvl8Xfahm2gMmTc0kRnQiZlkIRhFSvNUud1aFYyqaTgJjJxyaK0jBQ3JpCBSk3I48o5noHikXAeJN-Glcl0oneAsMTlI5DZlsgojnTp_DNRlTyrwixViRrAYVdrxW1D5yjYHHr618cfQLBYr4X1UyKmiV_yXF7YBzuA-JUk_MVXffrPdPuwNjrJi_PT4dkurDezPTjh8xlW7OxO78E7eW_H9eyLb-i_AdJH_BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+reproducing+kernels+to+the+evaluation+and+approximation+of+the+simple+and+time-dependent+imaginary+time+harmonic+oscillator+path+integrals&rft.jtitle=Applicable+analysis&rft.au=Keren%2C+Daniel&rft.date=2006-06-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=85&rft.issue=6-7&rft.spage=793&rft.epage=810&rft_id=info:doi/10.1080%2F00036810600725295&rft.externalDocID=172493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon