Applying reproducing kernels to the evaluation and approximation of the simple and time-dependent imaginary time harmonic oscillator path integrals

Reproduction of kernel Hilbert spaces offers an attractive setting for imaginary time path integrals, since they allow to naturally define a probability on the space of paths, which is equal to the probability associated with the paths in Feynman's path integral formulation. This study shows th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applicable analysis Ročník 85; číslo 6-7; s. 793 - 810
Hlavný autor: Keren, Daniel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis Group 01.06.2006
Predmet:
ISSN:0003-6811, 1563-504X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Reproduction of kernel Hilbert spaces offers an attractive setting for imaginary time path integrals, since they allow to naturally define a probability on the space of paths, which is equal to the probability associated with the paths in Feynman's path integral formulation. This study shows that if the propagator is Gaussian, its variance equals the squared norm of a linear functional on the space of paths. This can be used to rederive the harmonic oscillator propagator, as well as to offer a finite-dimensional perturbative approximation scheme for the time-dependent oscillator wave function and its ground state energy, and its bound error. The error is related to the rate of decay of the Fourier coefficients of the time-dependent part of the potential. When the rate of decay increases beyond a certain threshold, the error in the approximation over a subspace of dimension n is of order (1/n 3 ).
ISSN:0003-6811
1563-504X
DOI:10.1080/00036810600725295