Intelligent Fault Diagnosis System of Electrical Equipment Based on Neural Network Algorithm
With the progress of electrical equipment, various faults often occur during its operation, which adversely affect the efficiency and quality of power supply. In this paper, the neural network algorithm is used to detect the system parameters. This paper first discusses the shortcomings and defects...
Gespeichert in:
| Veröffentlicht in: | Procedia computer science Jg. 247; S. 485 - 492 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
2024
|
| Schlagworte: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the progress of electrical equipment, various faults often occur during its operation, which adversely affect the efficiency and quality of power supply. In this paper, the neural network algorithm is used to detect the system parameters. This paper first discusses the shortcomings and defects of traditional diagnosis methods, and then proposes a new method combining with existing technologies to build fault state identification criteria and classifiers based on neural network model, and also uses a variety of intelligent algorithms such as fuzzy reasoning and support vector machine to solve the common short-circuit problem of electrical equipment on the power line, so as to provide reliable security for actual operation and help the power sector. The performance of the diagnostic system is tested in this paper. The test results show that in the process of real-time monitoring, analysis and feedback processing of the fault identification system, the fault detection time is 5.2, 5.1, 4.9, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1 seconds by applying the neural network algorithm. This data represents a significant improvement in fault detection speed, from 5.2 seconds to 4.1 seconds. |
|---|---|
| AbstractList | With the progress of electrical equipment, various faults often occur during its operation, which adversely affect the efficiency and quality of power supply. In this paper, the neural network algorithm is used to detect the system parameters. This paper first discusses the shortcomings and defects of traditional diagnosis methods, and then proposes a new method combining with existing technologies to build fault state identification criteria and classifiers based on neural network model, and also uses a variety of intelligent algorithms such as fuzzy reasoning and support vector machine to solve the common short-circuit problem of electrical equipment on the power line, so as to provide reliable security for actual operation and help the power sector. The performance of the diagnostic system is tested in this paper. The test results show that in the process of real-time monitoring, analysis and feedback processing of the fault identification system, the fault detection time is 5.2, 5.1, 4.9, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1 seconds by applying the neural network algorithm. This data represents a significant improvement in fault detection speed, from 5.2 seconds to 4.1 seconds. |
| Author | Zhang, Chunfang Zhang, Chuanjun |
| Author_xml | – sequence: 1 givenname: Chuanjun surname: Zhang fullname: Zhang, Chuanjun email: zcj1385@126.com – sequence: 2 givenname: Chunfang surname: Zhang fullname: Zhang, Chunfang |
| BookMark | eNp9kL1OwzAQxy1UJErpE7D4BRLsOEnjgaGUFipVZQA2JMtxLsUlsYudFvXtcSgDE7fc5_9097tEA2MNIHRNSUwJzW-28c5Z5eOEJGmoxCQrztCQFpNJRDLCB3_iCzT2fkuCsaLgdDJEb0vTQdPoDZgOL-S-6fC9lhtjvfb4-eg7aLGt8bwB1TmtZIPnn3u9a_vxO-mhwtbgNexd6Kyh-7LuA0-bjXW6e2-v0HktGw_jXz9Cr4v5y-wxWj09LGfTVaQSyoqo4rykGctVktKapwBU1XnJFWNVmao0q1ieMZ5ykkACsswrRogMKWS5Kso8YSPETnuVs947qMXO6Va6o6BE9IzEVvwwEj2jvhgYBdXtSQXhtIMGJ7zSYBRU2oVvRWX1v_pv9_ZzNA |
| Cites_doi | 10.1007/s10489-023-04749-4 10.32604/csse.2023.035269 10.1007/s12652-022-04329-3 10.1109/TSMC.2023.3324735 10.1109/TII.2021.3120975 10.55730/1300-0632.4022 10.1109/TII.2022.3217757 10.1007/s12559-022-10082-8 10.1109/JSYST.2023.3234655 10.1007/s10462-022-10303-4 10.1080/00207543.2022.2122621 10.1109/TCYB.2023.3256080 10.1109/TC.2023.3334140 10.1080/21681163.2022.2092036 10.1007/s12652-019-01488-8 10.1007/s00366-021-01523-3 10.1007/s10278-022-00715-7 10.1109/TIE.2023.3243293 10.1007/s13042-023-01934-2 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procs.2024.10.058 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 492 |
| ExternalDocumentID | 10_1016_j_procs_2024_10_058 S1877050924028588 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ 9DU AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEUPX AFPUW AIGII AKBMS AKYEP CITATION ~HD |
| ID | FETCH-LOGICAL-c2138-d99b1536c241f94ee1cf6b9c33db4c45d365394902e2eab6d300a490e56c8b623 |
| ISSN | 1877-0509 |
| IngestDate | Thu Nov 27 01:01:35 EST 2025 Sat Nov 16 15:59:56 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Neural Network Algorithm Intelligent Diagnosis Electrical Equipment Equipment Failure |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2138-d99b1536c241f94ee1cf6b9c33db4c45d365394902e2eab6d300a490e56c8b623 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procs.2024.10.058 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1016_j_procs_2024_10_058 elsevier_sciencedirect_doi_10_1016_j_procs_2024_10_058 |
| PublicationCentury | 2000 |
| PublicationDate | 2024 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jiménez-Guarneros, Morales-Perez, Rangel-Magdaleno (bib0003) 2022; 18 Jiao, Li, Lin, Zhang (bib0007) 2024; 54 Li, Sun, Fink, Yang, Chen (bib0005) 2024; 54 Ashwini Kodipalli, Susheela (bib0011) 2023; 17 Mohammadi, Jannati (bib0001) 2023; 17 Sasikaladevi (bib0013) 2023; 14 Pogue, Nicolici (bib0015) 2024; 73 Huang, Wang, Xu (bib0017) 2023; 15 Fan, Xu, Jiang, Steven (bib0006) 2024; 71 Alsheikhy, Said, Shawly (bib0010) 2023; 46 He, Tian, Zhu, Zhang, Mao (bib0002) 2023; 19 Arya-Azar, Kardan, Ghordoyee-Milan (bib0019) 2023; 39 Wang, Zhang, Xu, Wang (bib0008) 2023; 53 Adegoke, Wong, Leung, Sum (bib0020) 2023; 14 Zhou, Chen, Shen, Cheng (bib0012) 2023; 61 Öniz, Ayyildiz (bib0018) 2023; 31 Mishra, Kane (bib0016) 2023; 56 Sheela Shiney, Albert Jerome (bib0014) 2023; 36 Jeya Sundari, Brintha (bib0009) 2023; 11 Song, Liu (bib0004) 2024; 15 Mohammadi (10.1016/j.procs.2024.10.058_bib0001) 2023; 17 Li (10.1016/j.procs.2024.10.058_bib0005) 2024; 54 Alsheikhy (10.1016/j.procs.2024.10.058_bib0010) 2023; 46 Ashwini Kodipalli (10.1016/j.procs.2024.10.058_bib0011) 2023; 17 Wang (10.1016/j.procs.2024.10.058_bib0008) 2023; 53 Zhou (10.1016/j.procs.2024.10.058_bib0012) 2023; 61 Öniz (10.1016/j.procs.2024.10.058_bib0018) 2023; 31 Huang (10.1016/j.procs.2024.10.058_bib0017) 2023; 15 Arya-Azar (10.1016/j.procs.2024.10.058_bib0019) 2023; 39 Sasikaladevi (10.1016/j.procs.2024.10.058_bib0013) 2023; 14 He (10.1016/j.procs.2024.10.058_bib0002) 2023; 19 Adegoke (10.1016/j.procs.2024.10.058_bib0020) 2023; 14 Jiao (10.1016/j.procs.2024.10.058_bib0007) 2024; 54 Song (10.1016/j.procs.2024.10.058_bib0004) 2024; 15 Mishra (10.1016/j.procs.2024.10.058_bib0016) 2023; 56 Pogue (10.1016/j.procs.2024.10.058_bib0015) 2024; 73 Sheela Shiney (10.1016/j.procs.2024.10.058_bib0014) 2023; 36 Jiménez-Guarneros (10.1016/j.procs.2024.10.058_bib0003) 2022; 18 Jeya Sundari (10.1016/j.procs.2024.10.058_bib0009) 2023; 11 Fan (10.1016/j.procs.2024.10.058_bib0006) 2024; 71 |
| References_xml | – volume: 11 start-page: 598 year: 2023 end-page: 605 ident: bib0009 article-title: An Intelligent Black Widow Optimization on Image Enhancement with Deep Learning Based Ovarian Tumor Diagnosis model publication-title: Comput. methods Biomech. Biomed. Eng. Imaging Vis. – volume: 46 start-page: 799 year: 2023 end-page: 817 ident: bib0010 article-title: An Intelligent Decision Support System for Lung Cancer Diagnosis publication-title: Comput. Syst. Sci. Eng. – volume: 36 start-page: 510 year: 2023 end-page: 525 ident: bib0014 article-title: An Intelligent System to Enhance the Performance of Brain Tumor Diagnosis from MR Images publication-title: J. Digit. Imaging – volume: 53 start-page: 24474 year: 2023 end-page: 24491 ident: bib0008 article-title: Wenlong Yang: A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis publication-title: Appl. Intell. – volume: 15 start-page: 90 year: 2023 end-page: 102 ident: bib0017 article-title: Neural Network-Based Adaptive Containment Control Algorithms Design for Nonlinear Multiagent Systems with Switching Topologies publication-title: Cogn. Comput. – volume: 19 start-page: 8351 year: 2023 end-page: 8361 ident: bib0002 article-title: Electrical Signature Analysis for Open-Circuit Faults Detection of Inverter With Various Disturbances in Distribution Grid publication-title: IEEE Trans. Ind. Informatics – volume: 18 start-page: 4688 year: 2022 end-page: 4697 ident: bib0003 article-title: Diagnostic of Combined Mechanical and Electrical Faults in ASD-Powered Induction Motor Using MODWT and a Lightweight 1-D CNN publication-title: IEEE Trans. Ind. Informatics – volume: 15 start-page: 685 year: 2024 end-page: 696 ident: bib0004 article-title: Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation publication-title: Int. J. Mach. Learn. Cybern. – volume: 17 start-page: 31 year: 2023 end-page: 42 ident: bib0011 article-title: Analysis of fuzzy based intelligent health care application system for the diagnosis of mental health in women with ovarian cancer using computational models publication-title: Intell. Decis. Technol. – volume: 54 start-page: 1239 year: 2024 end-page: 1249 ident: bib0007 article-title: Entropy-Oriented Domain Adaptation for Intelligent Diagnosis of Rotating Machinery publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 31 start-page: 860 year: 2023 end-page: 875 ident: bib0018 article-title: Recognizing handwritten digits using spiking neural networks with learning algorithms based on sliding mode control theory publication-title: Turkish J. Electr. Eng. Comput. Sci. – volume: 14 start-page: 15643 year: 2023 end-page: 15657 ident: bib0020 article-title: Two noise tolerant incremental learning algorithms for single layer feed-forward neural networks publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 54 start-page: 506 year: 2024 end-page: 518 ident: bib0005 article-title: Ruqiang Yan: Filter-Informed Spectral Graph Wavelet Networks for Multiscale Feature Extraction and Intelligent Fault Diagnosis publication-title: IEEE Trans. Cybern. – volume: 71 start-page: 965 year: 2024 end-page: 974 ident: bib0006 article-title: Ding: Deep Mixed Domain Generalization Network for Intelligent Fault Diagnosis Under Unseen Conditions publication-title: IEEE Trans. Ind. Electron. – volume: 17 start-page: 3160 year: 2023 end-page: 3171 ident: bib0001 article-title: Mohammadreza Shams: Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults publication-title: IEEE Syst. J. – volume: 73 start-page: 495 year: 2024 end-page: 509 ident: bib0015 article-title: Fast Inner-Product Algorithms and Architectures for Deep Neural Network Accelerators publication-title: IEEE Trans. Computers – volume: 14 start-page: 12443 year: 2023 end-page: 12452 ident: bib0013 article-title: Delaunay triangulation based intelligent system for the diagnosis of covid from the low radiation CXR images publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 56 start-page: 5095 year: 2023 end-page: 5132 ident: bib0016 article-title: A survey of designing convolutional neural network using evolutionary algorithms publication-title: Artif. Intell. Rev. – volume: 61 start-page: 8252 year: 2023 end-page: 8264 ident: bib0012 article-title: Min Xia: Intelligent machine fault diagnosis with effective denoising using EEMD-ICA- FuzzyEn and CNN publication-title: Int. J. Prod. Res. – volume: 39 start-page: 1375 year: 2023 end-page: 1393 ident: bib0019 article-title: Developing the artificial neural network-evolutionary algorithms hybrid models (ANN-EA) to predict the daily evaporation from dam reservoirs publication-title: Eng. Comput. – volume: 53 start-page: 24474 issue: 20 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0008 article-title: Wenlong Yang: A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis publication-title: Appl. Intell. doi: 10.1007/s10489-023-04749-4 – volume: 46 start-page: 799 issue: 1 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0010 article-title: An Intelligent Decision Support System for Lung Cancer Diagnosis publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.035269 – volume: 17 start-page: 31 issue: 1 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0011 article-title: Analysis of fuzzy based intelligent health care application system for the diagnosis of mental health in women with ovarian cancer using computational models publication-title: Intell. Decis. Technol. – volume: 14 start-page: 12443 issue: 9 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0013 article-title: Delaunay triangulation based intelligent system for the diagnosis of covid from the low radiation CXR images publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-022-04329-3 – volume: 54 start-page: 1239 issue: 2 year: 2024 ident: 10.1016/j.procs.2024.10.058_bib0007 article-title: Entropy-Oriented Domain Adaptation for Intelligent Diagnosis of Rotating Machinery publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2023.3324735 – volume: 18 start-page: 4688 issue: 7 year: 2022 ident: 10.1016/j.procs.2024.10.058_bib0003 article-title: Diagnostic of Combined Mechanical and Electrical Faults in ASD-Powered Induction Motor Using MODWT and a Lightweight 1-D CNN publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2021.3120975 – volume: 31 start-page: 860 issue: 5 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0018 article-title: Recognizing handwritten digits using spiking neural networks with learning algorithms based on sliding mode control theory publication-title: Turkish J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.4022 – volume: 19 start-page: 8351 issue: 7 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0002 article-title: Electrical Signature Analysis for Open-Circuit Faults Detection of Inverter With Various Disturbances in Distribution Grid publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2022.3217757 – volume: 15 start-page: 90 issue: 1 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0017 article-title: Neural Network-Based Adaptive Containment Control Algorithms Design for Nonlinear Multiagent Systems with Switching Topologies publication-title: Cogn. Comput. doi: 10.1007/s12559-022-10082-8 – volume: 17 start-page: 3160 issue: 2 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0001 article-title: Mohammadreza Shams: Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2023.3234655 – volume: 56 start-page: 5095 issue: 6 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0016 article-title: A survey of designing convolutional neural network using evolutionary algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10303-4 – volume: 61 start-page: 8252 issue: 23 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0012 article-title: Min Xia: Intelligent machine fault diagnosis with effective denoising using EEMD-ICA- FuzzyEn and CNN publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2022.2122621 – volume: 54 start-page: 506 issue: 1 year: 2024 ident: 10.1016/j.procs.2024.10.058_bib0005 article-title: Ruqiang Yan: Filter-Informed Spectral Graph Wavelet Networks for Multiscale Feature Extraction and Intelligent Fault Diagnosis publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2023.3256080 – volume: 73 start-page: 495 issue: 2 year: 2024 ident: 10.1016/j.procs.2024.10.058_bib0015 article-title: Fast Inner-Product Algorithms and Architectures for Deep Neural Network Accelerators publication-title: IEEE Trans. Computers doi: 10.1109/TC.2023.3334140 – volume: 11 start-page: 598 issue: 3 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0009 article-title: An Intelligent Black Widow Optimization on Image Enhancement with Deep Learning Based Ovarian Tumor Diagnosis model publication-title: Comput. methods Biomech. Biomed. Eng. Imaging Vis. doi: 10.1080/21681163.2022.2092036 – volume: 14 start-page: 15643 issue: 12 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0020 article-title: Two noise tolerant incremental learning algorithms for single layer feed-forward neural networks publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01488-8 – volume: 39 start-page: 1375 issue: 2 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0019 article-title: Developing the artificial neural network-evolutionary algorithms hybrid models (ANN-EA) to predict the daily evaporation from dam reservoirs publication-title: Eng. Comput. doi: 10.1007/s00366-021-01523-3 – volume: 36 start-page: 510 issue: 2 year: 2023 ident: 10.1016/j.procs.2024.10.058_bib0014 article-title: An Intelligent System to Enhance the Performance of Brain Tumor Diagnosis from MR Images publication-title: J. Digit. Imaging doi: 10.1007/s10278-022-00715-7 – volume: 71 start-page: 965 issue: 1 year: 2024 ident: 10.1016/j.procs.2024.10.058_bib0006 article-title: Ding: Deep Mixed Domain Generalization Network for Intelligent Fault Diagnosis Under Unseen Conditions publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2023.3243293 – volume: 15 start-page: 685 issue: 2 year: 2024 ident: 10.1016/j.procs.2024.10.058_bib0004 article-title: Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-023-01934-2 |
| SSID | ssj0000388917 |
| Score | 2.3081343 |
| Snippet | With the progress of electrical equipment, various faults often occur during its operation, which adversely affect the efficiency and quality of power supply.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 485 |
| SubjectTerms | Electrical Equipment Equipment Failure Intelligent Diagnosis Neural Network Algorithm |
| Title | Intelligent Fault Diagnosis System of Electrical Equipment Based on Neural Network Algorithm |
| URI | https://dx.doi.org/10.1016/j.procs.2024.10.058 |
| Volume | 247 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb5tAEF2lTg69tPmq6qap9pCbQwTLArvHNHLUHmrlkEo5REKwLI0td53YUPnU357ZD7BbW1Z8yAXBItaGeZoZhrdvEDojRcjg9Z95pSyZR0UQe1keRh7JiIyLkiVUMtNsIhkM2N0dv3GUoJlpJ5AoxeZz_viqpoYxMLZeOruFudtJYQD2weiwBbPD9kWG_96KbFa966weV-DWDJ1uOHP65IZNaNrfGAv1n-qhYQ31vkJIK_TnAy3ZAWcGliPeuxz_mkyH1cPv5VTWLDEAdBlWum4M0XPRdKUWffVQZ2pUq3UnVJm52OlKD3ats_OTLEk8LR1jw8iaMedcidXTdO6R2vY8LtJS2wVvxYnbesJIhxChFdUJvdAEPCvx_q9k9n-hrCUYNty1UWomSfUkMJLCJG_QLkkirul_P_4u6nFaFYebBs3tfTQiVYYOuPJn1icyS8nJ7T56594q8KVFwwHakeoQvW86dmDnwI_Q_RI4sAEHbsGBLTjwpMQLcOAWHNiAA08UtuDADhy4Bccx-nndv7365rn-Gp4gAcS5gvMcAl4sIIsrOZUyEGWccxGGRU4FjYpQ6xZT7hNJZJbHRej7GRzKKBYsh7z5A-qoiZIfESacBT5clgcioFFCs0h_nxdMBixPSp920XnzsMAiRkYl3WCjLoqbB5o67NoMLwWMbLrw03a_c4Le6iNbUvuMOtW0lqdoT_yphrPpFwOQZ0hVgak |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+System+of+Electrical+Equipment+Based+on+Neural+Network+Algorithm&rft.jtitle=Procedia+computer+science&rft.au=Zhang%2C+Chuanjun&rft.au=Zhang%2C+Chunfang&rft.date=2024&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=247&rft.spage=485&rft.epage=492&rft_id=info:doi/10.1016%2Fj.procs.2024.10.058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2024_10_058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |