Approximating Maximum Edge 2-Coloring by Normalizing Graphs
In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a releva...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník 27:2; číslo Discrete Algorithms |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Discrete Mathematics & Theoretical Computer Science
01.05.2025
|
| Témata: | |
| ISSN: | 1365-8050, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a relevant graph class, ME2C models anti-Ramsey numbers and it was considered in network applications. For the problem a 2-approximation algorithm is known, and if the input graph has a perfect matching, the same algorithm has been shown to have a performance guarantee of 5/3. It is known that ME2C is APX-hard and that it is UG-hard to obtain an approximation ratio better than 1.5. We show that if the input graph has a perfect matching, there is a polynomial time 1.625-approximation and if the graph is claw-free or if the maximum degree of the input graph is at most three (i.e., the graph is subcubic), there is a polynomial time 1.5-approximation algorithm for ME2C
Comment: 24 pages, 6 figures, preliminary version published at WAOA 2023 |
|---|---|
| AbstractList | In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a relevant graph class, ME2C models anti-Ramsey numbers and it was considered in network applications. For the problem a 2-approximation algorithm is known, and if the input graph has a perfect matching, the same algorithm has been shown to have a performance guarantee of 5/3. It is known that ME2C is APX-hard and that it is UG-hard to obtain an approximation ratio better than 1.5. We show that if the input graph has a perfect matching, there is a polynomial time 1.625-approximation and if the graph is claw-free or if the maximum degree of the input graph is at most three (i.e., the graph is subcubic), there is a polynomial time 1.5-approximation algorithm for ME2C In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a relevant graph class, ME2C models anti-Ramsey numbers and it was considered in network applications. For the problem a 2-approximation algorithm is known, and if the input graph has a perfect matching, the same algorithm has been shown to have a performance guarantee of 5/3. It is known that ME2C is APX-hard and that it is UG-hard to obtain an approximation ratio better than 1.5. We show that if the input graph has a perfect matching, there is a polynomial time 1.625-approximation and if the graph is claw-free or if the maximum degree of the input graph is at most three (i.e., the graph is subcubic), there is a polynomial time 1.5-approximation algorithm for ME2C Comment: 24 pages, 6 figures, preliminary version published at WAOA 2023 |
| Author | Ruderer, Michael Roshany-Tabrizi, Aida Mömke, Tobias Vincze, Roland Popa, Alexandru |
| Author_xml | – sequence: 1 givenname: Tobias surname: Mömke fullname: Mömke, Tobias – sequence: 2 givenname: Alexandru surname: Popa fullname: Popa, Alexandru – sequence: 3 givenname: Aida surname: Roshany-Tabrizi fullname: Roshany-Tabrizi, Aida – sequence: 4 givenname: Michael surname: Ruderer fullname: Ruderer, Michael – sequence: 5 givenname: Roland surname: Vincze fullname: Vincze, Roland |
| BookMark | eNpNkM1Kw0AUhQepYFvd-QB5AFPnPwmuSqm1UHWj6-HOX01JOmGmgvXpTVMRV_fcs_g4fBM02oe9Q-iW4BmXtCrvbXswaUYYJfQCjQmTIi-xwKN_-QpNUtphTGjFizF6mHddDF91C4d6v82eoY-fbba0W5fRfBGaEE-9PmYvIbbQ1N-ndxWh-0jX6NJDk9zN752i98fl2-Ip37yu1ov5Jje0n5ILQbU0hFlaaawx9UQWTpSSYG-Il1ZiSQiUrhKFBulL5oXQBScFt6wAsGyK1meuDbBTXezHxqMKUKuhCHGrIB5q0ziFHbdSluAtaK4tryrNpLZG8J4suOtZd2eWiSGl6Pwfj2A1SFSDRDVIZD971mbC |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.46298/dmtcs.13212 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| ExternalDocumentID | oai_doaj_org_article_0e4d668afdab4bd499b36bdc54a6f54e 10_46298_dmtcs_13212 |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M |
| ID | FETCH-LOGICAL-c2132-552b6c13d29b0b02f167e58610fc1f6d60611a8e957ba6f83f55b74174d37aad3 |
| IEDL.DBID | DOA |
| ISSN | 1365-8050 |
| IngestDate | Fri Oct 03 12:44:35 EDT 2025 Sat Nov 29 08:00:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Discrete Algorithms |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2132-552b6c13d29b0b02f167e58610fc1f6d60611a8e957ba6f83f55b74174d37aad3 |
| ORCID | 0000-0002-2509-6972 0009-0009-1968-4821 0009-0003-3607-9611 |
| OpenAccessLink | https://doaj.org/article/0e4d668afdab4bd499b36bdc54a6f54e |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0e4d668afdab4bd499b36bdc54a6f54e crossref_primary_10_46298_dmtcs_13212 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete mathematics and theoretical computer science |
| PublicationYear | 2025 |
| Publisher | Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 |
| Score | 2.3285067 |
| Snippet | In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | computer science - data structures and algorithms computer science - discrete mathematics |
| Title | Approximating Maximum Edge 2-Coloring by Normalizing Graphs |
| URI | https://doaj.org/article/0e4d668afdab4bd499b36bdc54a6f54e |
| Volume | 27:2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database (ProQuest) customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA5SPejBpSrWpcxBj2Nnsg-eaqkL2NKDQj0Nk60U7FQ6rai_3iQzLfXkxVsSQgjfy_I98vI9AC5xgi0NUCwkMlEhVpDaPYeikMSZ4hE0DDH_UfiJ9ft8OEwGa6m-XExYKQ9cAteKNFaU8syoTGChLEEXiAolCc6oIVi709eynqUzVb0fwASzMswdU5jwlprMZXFtPa8Y_rqA1nT6_YVytw92KyYYtMsZHIANndfB3jLLQlBtujrY6a2UVYtDcNN2IuCfY1fPR0Evs8XFJOiqkQ5g2JmWAXWB-Ar6jo2-jb9d9d7JUhdH4OWu-9x5CKsECKGEdq4hIVBQGSMFExEJi1xMmSbcMh4jY0OVdT7iOOM6IUxYNDgyhAhLERhWiGWZQseglk9zfQICzQUT7lEOIYMNlZxJZSQVMmIQGqIa4GqJSvpe6lyk1j_w6KUevdSj1wC3DrJVH6dO7RuszdLKZulfNjv9j0HOwDZ0uXh98OE5qM1nC30BtuTHfFzMmn45NMHm4LE3eP0BTDy9_g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximating+Maximum+Edge+2-Coloring+by+Normalizing+Graphs&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=M%C3%B6mke%2C+Tobias&rft.au=Popa%2C+Alexandru&rft.au=Roshany-Tabrizi%2C+Aida&rft.au=Ruderer%2C+Michael&rft.date=2025-05-01&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=27%3A2&rft.issue=Discrete+Algorithms&rft_id=info:doi/10.46298%2Fdmtcs.13212&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_13212 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |