Approximating Maximum Edge 2-Coloring by Normalizing Graphs

In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a releva...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 27:2; číslo Discrete Algorithms
Hlavní autoři: Mömke, Tobias, Popa, Alexandru, Roshany-Tabrizi, Aida, Ruderer, Michael, Vincze, Roland
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 01.05.2025
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a relevant graph class, ME2C models anti-Ramsey numbers and it was considered in network applications. For the problem a 2-approximation algorithm is known, and if the input graph has a perfect matching, the same algorithm has been shown to have a performance guarantee of 5/3. It is known that ME2C is APX-hard and that it is UG-hard to obtain an approximation ratio better than 1.5. We show that if the input graph has a perfect matching, there is a polynomial time 1.625-approximation and if the graph is claw-free or if the maximum degree of the input graph is at most three (i.e., the graph is subcubic), there is a polynomial time 1.5-approximation algorithm for ME2C Comment: 24 pages, 6 figures, preliminary version published at WAOA 2023
AbstractList In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a relevant graph class, ME2C models anti-Ramsey numbers and it was considered in network applications. For the problem a 2-approximation algorithm is known, and if the input graph has a perfect matching, the same algorithm has been shown to have a performance guarantee of 5/3. It is known that ME2C is APX-hard and that it is UG-hard to obtain an approximation ratio better than 1.5. We show that if the input graph has a perfect matching, there is a polynomial time 1.625-approximation and if the graph is claw-free or if the maximum degree of the input graph is at most three (i.e., the graph is subcubic), there is a polynomial time 1.5-approximation algorithm for ME2C
In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in a graph G with the goal to maximize the number of colors. For a relevant graph class, ME2C models anti-Ramsey numbers and it was considered in network applications. For the problem a 2-approximation algorithm is known, and if the input graph has a perfect matching, the same algorithm has been shown to have a performance guarantee of 5/3. It is known that ME2C is APX-hard and that it is UG-hard to obtain an approximation ratio better than 1.5. We show that if the input graph has a perfect matching, there is a polynomial time 1.625-approximation and if the graph is claw-free or if the maximum degree of the input graph is at most three (i.e., the graph is subcubic), there is a polynomial time 1.5-approximation algorithm for ME2C Comment: 24 pages, 6 figures, preliminary version published at WAOA 2023
Author Ruderer, Michael
Roshany-Tabrizi, Aida
Mömke, Tobias
Vincze, Roland
Popa, Alexandru
Author_xml – sequence: 1
  givenname: Tobias
  surname: Mömke
  fullname: Mömke, Tobias
– sequence: 2
  givenname: Alexandru
  surname: Popa
  fullname: Popa, Alexandru
– sequence: 3
  givenname: Aida
  surname: Roshany-Tabrizi
  fullname: Roshany-Tabrizi, Aida
– sequence: 4
  givenname: Michael
  surname: Ruderer
  fullname: Ruderer, Michael
– sequence: 5
  givenname: Roland
  surname: Vincze
  fullname: Vincze, Roland
BookMark eNpNkM1Kw0AUhQepYFvd-QB5AFPnPwmuSqm1UHWj6-HOX01JOmGmgvXpTVMRV_fcs_g4fBM02oe9Q-iW4BmXtCrvbXswaUYYJfQCjQmTIi-xwKN_-QpNUtphTGjFizF6mHddDF91C4d6v82eoY-fbba0W5fRfBGaEE-9PmYvIbbQ1N-ndxWh-0jX6NJDk9zN752i98fl2-Ip37yu1ov5Jje0n5ILQbU0hFlaaawx9UQWTpSSYG-Il1ZiSQiUrhKFBulL5oXQBScFt6wAsGyK1meuDbBTXezHxqMKUKuhCHGrIB5q0ziFHbdSluAtaK4tryrNpLZG8J4suOtZd2eWiSGl6Pwfj2A1SFSDRDVIZD971mbC
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/dmtcs.13212
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_0e4d668afdab4bd499b36bdc54a6f54e
10_46298_dmtcs_13212
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c2132-552b6c13d29b0b02f167e58610fc1f6d60611a8e957ba6f83f55b74174d37aad3
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Fri Oct 03 12:44:35 EDT 2025
Sat Nov 29 08:00:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Discrete Algorithms
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2132-552b6c13d29b0b02f167e58610fc1f6d60611a8e957ba6f83f55b74174d37aad3
ORCID 0000-0002-2509-6972
0009-0009-1968-4821
0009-0003-3607-9611
OpenAccessLink https://doaj.org/article/0e4d668afdab4bd499b36bdc54a6f54e
ParticipantIDs doaj_primary_oai_doaj_org_article_0e4d668afdab4bd499b36bdc54a6f54e
crossref_primary_10_46298_dmtcs_13212
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2025
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 2.3285067
Snippet In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges such that no vertex is incident to edges with more than 2 distinct colors. The...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - data structures and algorithms
computer science - discrete mathematics
Title Approximating Maximum Edge 2-Coloring by Normalizing Graphs
URI https://doaj.org/article/0e4d668afdab4bd499b36bdc54a6f54e
Volume 27:2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database (ProQuest)
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA5SPejBpSrWpcxBj2Nnsg-eaqkL2NKDQj0Nk60U7FQ6rai_3iQzLfXkxVsSQgjfy_I98vI9AC5xgi0NUCwkMlEhVpDaPYeikMSZ4hE0DDH_UfiJ9ft8OEwGa6m-XExYKQ9cAteKNFaU8syoTGChLEEXiAolCc6oIVi709eynqUzVb0fwASzMswdU5jwlprMZXFtPa8Y_rqA1nT6_YVytw92KyYYtMsZHIANndfB3jLLQlBtujrY6a2UVYtDcNN2IuCfY1fPR0Evs8XFJOiqkQ5g2JmWAXWB-Ar6jo2-jb9d9d7JUhdH4OWu-9x5CKsECKGEdq4hIVBQGSMFExEJi1xMmSbcMh4jY0OVdT7iOOM6IUxYNDgyhAhLERhWiGWZQseglk9zfQICzQUT7lEOIYMNlZxJZSQVMmIQGqIa4GqJSvpe6lyk1j_w6KUevdSj1wC3DrJVH6dO7RuszdLKZulfNjv9j0HOwDZ0uXh98OE5qM1nC30BtuTHfFzMmn45NMHm4LE3eP0BTDy9_g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximating+Maximum+Edge+2-Coloring+by+Normalizing+Graphs&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=M%C3%B6mke%2C+Tobias&rft.au=Popa%2C+Alexandru&rft.au=Roshany-Tabrizi%2C+Aida&rft.au=Ruderer%2C+Michael&rft.date=2025-05-01&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=27%3A2&rft.issue=Discrete+Algorithms&rft_id=info:doi/10.46298%2Fdmtcs.13212&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_13212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon