A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization

In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and cluster...

Full description

Saved in:
Bibliographic Details
Published in:Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska Vol. 15; no. 3; pp. 10 - 14
Main Authors: Ibrahim, Moatasem Mahmood, Qasim, Omar Saber, Hussein, Talal Fadhil
Format: Journal Article
Language:English
Published: Lublin University of Technology 30.09.2025
Subjects:
ISSN:2083-0157, 2391-6761
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques. W niniejszym artykule proponujemy nowe podejście hybrydowe, które łączy algorytm uogólnionej optymalizacji rozkładu normalnego (GNDOA) i klasteryzację rozmytych C-średnich (FCM). Zostało ono zaprojektowane do przetwarzania nienadzorowanych zbiorów danych. Pomysł ten ma na celu rozwój konwencjonalnych opcji funkcji i technik klasteryzacji. Proponowany GNDOA-FCM wykorzystuje koncepcję znormalizowanego rozkładu normalnego wraz z FCM w celu uzyskania dokładniejszych i wydajniejszych wyników klasteryzacji, co prowadzi do przyspieszenia wykrywania w badanym regionie. Wskaźnik Calińskiego-Harabasza pomaga znaleźć liczbę klastrów, które charakteryzują się wysoką zwartością w obrębie każdego klastra, a także w odniesieniu do innych klastrów. Wydajność proponowanego hybrydowego podejścia GNDOA-FCM została dokładnie przetestowana przy użyciu różnych zestawów danych benchmarkowych. Wyniki porównano z istniejącymi metodami klastrowania przy użyciu wskaźników oceny, takich jak wynik sylwetki i dokładność wyboru cech. Wyniki eksperymentów pokazują, że proponowana metoda może być elastycznie dostosowana w celu uzyskania wyższej jakości klastrowania i jest bardziej skuteczna niż konwencjonalne techniki.
AbstractList In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques.
In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques. W niniejszym artykule proponujemy nowe podejście hybrydowe, które łączy algorytm uogólnionej optymalizacji rozkładu normalnego (GNDOA) i klasteryzację rozmytych C-średnich (FCM). Zostało ono zaprojektowane do przetwarzania nienadzorowanych zbiorów danych. Pomysł ten ma na celu rozwój konwencjonalnych opcji funkcji i technik klasteryzacji. Proponowany GNDOA-FCM wykorzystuje koncepcję znormalizowanego rozkładu normalnego wraz z FCM w celu uzyskania dokładniejszych i wydajniejszych wyników klasteryzacji, co prowadzi do przyspieszenia wykrywania w badanym regionie. Wskaźnik Calińskiego-Harabasza pomaga znaleźć liczbę klastrów, które charakteryzują się wysoką zwartością w obrębie każdego klastra, a także w odniesieniu do innych klastrów. Wydajność proponowanego hybrydowego podejścia GNDOA-FCM została dokładnie przetestowana przy użyciu różnych zestawów danych benchmarkowych. Wyniki porównano z istniejącymi metodami klastrowania przy użyciu wskaźników oceny, takich jak wynik sylwetki i dokładność wyboru cech. Wyniki eksperymentów pokazują, że proponowana metoda może być elastycznie dostosowana w celu uzyskania wyższej jakości klastrowania i jest bardziej skuteczna niż konwencjonalne techniki.
Author Hussein, Talal Fadhil
Ibrahim, Moatasem Mahmood
Qasim, Omar Saber
Author_xml – sequence: 1
  givenname: Moatasem Mahmood
  orcidid: 0009-0006-5879-2196
  surname: Ibrahim
  fullname: Ibrahim, Moatasem Mahmood
– sequence: 2
  givenname: Omar Saber
  orcidid: 0000-0003-3301-6271
  surname: Qasim
  fullname: Qasim, Omar Saber
– sequence: 3
  givenname: Talal Fadhil
  surname: Hussein
  fullname: Hussein, Talal Fadhil
BookMark eNpNkd1q3DAQhUVJoGmauzyAHqBOJMuy7MuwtE0g0Jv22oz-vNPakpG8tOt36btG2Q2lw8DMHJhvYM4HchFicITccnYnpOqae4RljPmu7Wv-jlzVoudVq1p-UXrWiYpxqd6Tm5xRMylLClVfkb8PdH_UCS2FZUkRzJ6aOGsMGEY6uuASTLg5S0NMM0zUYl4T6sOKMdC4rDjjBqcBpjEmXPczhWCpP2zbke6q2UHI9HfR6a6QQv6F1SMk0JA3isG6P9THRM10yKtLr0f_h34klx6m7G7e6jX58eXz991j9fzt69Pu4bkyNRe8UtZAV9eeu0YpaFjbKls7p7QwsnOtl7ZlmvclvGRKa9tKxRkXna-lLkvimjyduTbCz2FJOEM6DhFwOAkxjQOkFc3khgJQ1vVaOG6b8tNeeNl33ppGu64xrLA-nVkmxZyT8_94nA0np4azU8OrU-IFxyOOBA
Cites_doi 10.54216/FPA.110105
10.1007/s40595-016-0086-9
10.1007/s42044-023-00160-x
10.1080/24725854.2024.2332910
10.17700/jai.2015.6.3.196
10.1109/TII.2021.3052531
10.1109/ACCESS.2024.3394541
10.3390/electronics12214467
10.1007/s10489-019-01626-x
10.1007/s11766-022-4489-3
10.1088/1742-6596/1897/1/012036
10.48084/etasr.7401
10.3390/e25071021
10.1016/j.envres.2022.114519
10.3390/brainsci10120949
10.1016/j.jksuci.2021.08.003
10.1016/j.swevo.2024.101661
10.6028/NIST.SP.260-202
10.18280/ijcmem.120208
10.1109/OJITS.2022.3149474
10.30871/jaic.v7i1.4947
10.1039/D3EN00796K
10.1088/1757-899X/569/5/052024
10.1016/j.enconman.2020.113301
10.3389/fnut.2023.1070808
10.1007/s10462-022-10182-9
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.35784/iapgos.6921
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2391-6761
EndPage 14
ExternalDocumentID oai_doaj_org_article_5077de9b3e1d401593f598fdc4be84c0
10_35784_iapgos_6921
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
GROUPED_DOAJ
Y2W
ID FETCH-LOGICAL-c2131-7dca822f1e477a40667d2ee7b3c58e6f5d60b19999f507bbd65710138f25b1e43
IEDL.DBID DOA
ISSN 2083-0157
IngestDate Mon Oct 13 19:21:38 EDT 2025
Sat Nov 29 07:22:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2131-7dca822f1e477a40667d2ee7b3c58e6f5d60b19999f507bbd65710138f25b1e43
ORCID 0000-0003-3301-6271
0009-0006-5879-2196
OpenAccessLink https://doaj.org/article/5077de9b3e1d401593f598fdc4be84c0
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_5077de9b3e1d401593f598fdc4be84c0
crossref_primary_10_35784_iapgos_6921
PublicationCentury 2000
PublicationDate 2025-09-30
PublicationDateYYYYMMDD 2025-09-30
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
PublicationYear 2025
Publisher Lublin University of Technology
Publisher_xml – name: Lublin University of Technology
References 158688
158689
158700
158686
158687
158703
158704
158701
158702
158707
158708
158705
158706
158691
158692
158690
158695
158696
158693
158694
158699
158697
158698
158681
158684
158685
158682
158683
References_xml – ident: 158682
  doi: 10.54216/FPA.110105
– ident: 158691
  doi: 10.1007/s40595-016-0086-9
– ident: 158689
  doi: 10.1007/s42044-023-00160-x
– ident: 158693
  doi: 10.1080/24725854.2024.2332910
– ident: 158685
  doi: 10.17700/jai.2015.6.3.196
– ident: 158694
  doi: 10.1109/TII.2021.3052531
– ident: 158683
  doi: 10.1109/ACCESS.2024.3394541
– ident: 158692
  doi: 10.3390/electronics12214467
– ident: 158696
  doi: 10.1007/s10489-019-01626-x
– ident: 158705
  doi: 10.1007/s11766-022-4489-3
– ident: 158681
  doi: 10.1088/1742-6596/1897/1/012036
– ident: 158687
  doi: 10.48084/etasr.7401
– ident: 158695
  doi: 10.3390/e25071021
– ident: 158708
  doi: 10.1016/j.envres.2022.114519
– ident: 158698
  doi: 10.3390/brainsci10120949
– ident: 158702
  doi: 10.1016/j.jksuci.2021.08.003
– ident: 158688
– ident: 158700
  doi: 10.1016/j.swevo.2024.101661
– ident: 158701
– ident: 158697
  doi: 10.6028/NIST.SP.260-202
– ident: 158690
  doi: 10.18280/ijcmem.120208
– ident: 158704
  doi: 10.1109/OJITS.2022.3149474
– ident: 158684
  doi: 10.30871/jaic.v7i1.4947
– ident: 158699
  doi: 10.1039/D3EN00796K
– ident: 158703
  doi: 10.1088/1757-899X/569/5/052024
– ident: 158707
  doi: 10.1016/j.enconman.2020.113301
– ident: 158686
  doi: 10.3389/fnut.2023.1070808
– ident: 158706
  doi: 10.1007/s10462-022-10182-9
SSID ssib055055372
ssib044739749
ssib017424439
ssib046627282
ssj0002875805
Score 2.3048422
Snippet In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 10
SubjectTerms Calinski-Harabasz index
data mining
feature selection
fuzzy C-means clustering
generalised normal distribution optimisation algorithm
Title A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
URI https://doaj.org/article/5077de9b3e1d401593f598fdc4be84c0
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2391-6761
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002875805
  issn: 2083-0157
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2391-6761
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044739749
  issn: 2083-0157
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07b9RAEMdXKKJICgSEiISHpkjKJbfeXa9dhihRCohSBCmdtc_LoTtfdA-kXME34bsys3Y4U9HQuLDstbwz8vzHmvkNY8fapsKhLOaj4BPHfENwa03iVvlQuhCCdJkz-8VcX1d3d_XNYNQX1YR1eOBu405Rr5gQayejCJgL6FomXVcpeOVipXzO1kemHiRT6EkoszFsbXmXShmMu9tEQxH2vNhSXUima9l3kH7Pv5xQR-f6xwI1Cubb2nRV8wSHUacT-zCeLz-VdSH-imcD7H-OT5cv2YteWMJZ90Kv2LPYvmZ7A9zgPvt1BveP1KEFTyRxQH9zeUQEjDv-9GQTA7QkZKcQCKrbz8OCOX5bZn3TJtjpeL6YrO5nYNsAab3ZPMI5n0WMe0B_doFavmgkNr-yVDSw3EDGMgJKZPDTNdEZ6KHDRd-wb5cXt-dXvB_PwH0hpOAmeIvyIomojLGKqmVDEaNx0usqlkmHcuSIclAnNKJzodQoZ4SsUqEd3iQP2E47b-NbahxXtfQCzaydoiQMhWiwpdeiREfS4ZCdPG1y89BROBrMXrIxms4YDRnjkH0mC_y5htjZ-QR6VNN7VPMvjzr6H4u8Y7sFTQrOlSXv2c5qsY4f2HP_YzVZLj5mZ8Xj158XvwG-eu3a
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+combining+generalized+normal+distribution+optimization+algorithm+and+fuzzy+C-means+with+Calinski-Harabasz+index+for+clustering+optimization&rft.jtitle=Informatyka%2C+Automatyka%2C+Pomiary+w+Gospodarce+i+Ochronie+%C5%9Arodowiska&rft.au=Ibrahim%2C+Moatasem+Mahmood&rft.au=Qasim%2C+Omar+Saber&rft.au=Hussein%2C+Talal+Fadhil&rft.date=2025-09-30&rft.issn=2083-0157&rft.eissn=2391-6761&rft.volume=15&rft.issue=3&rft.spage=10&rft.epage=14&rft_id=info:doi/10.35784%2Fiapgos.6921&rft.externalDBID=n%2Fa&rft.externalDocID=10_35784_iapgos_6921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-0157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-0157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-0157&client=summon