Statistical inference for a stochastic generalized logistic differential equation

In this research we aim to estimate three parameters in a stochastic generalized logistic differential equation. We assume the intrinsic growth rate and shape parameters are constant but unknown. To estimate these two parameters, we use the maximum likelihood method and establish that the estimators...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in nonlinear science & numerical simulation Ročník 139; s. 108261
Hlavní autori: Baltazar-Larios, Fernando, Delgado-Vences, Francisco, Diaz-Infante, Saul, Gomez, Eduardo Lince
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2024
Predmet:
ISSN:1007-5704
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this research we aim to estimate three parameters in a stochastic generalized logistic differential equation. We assume the intrinsic growth rate and shape parameters are constant but unknown. To estimate these two parameters, we use the maximum likelihood method and establish that the estimators for these two parameters are strongly consistent. We estimate the diffusion parameter by using the quadratic variation processes. To test our results, we evaluate two data scenarios, complete and incomplete, with fixed values assigned to the three parameters. In the incomplete data scenario, we apply an Expectation Maximization algorithm. •MLE for three parameters in a stochastic generalized logistic differential equation.•The growth rate and shape are estimated using ML and they are shown to be consistent.•The ML estimator proposed exhibits a high level of efficiency and robustness.
AbstractList In this research we aim to estimate three parameters in a stochastic generalized logistic differential equation. We assume the intrinsic growth rate and shape parameters are constant but unknown. To estimate these two parameters, we use the maximum likelihood method and establish that the estimators for these two parameters are strongly consistent. We estimate the diffusion parameter by using the quadratic variation processes. To test our results, we evaluate two data scenarios, complete and incomplete, with fixed values assigned to the three parameters. In the incomplete data scenario, we apply an Expectation Maximization algorithm. •MLE for three parameters in a stochastic generalized logistic differential equation.•The growth rate and shape are estimated using ML and they are shown to be consistent.•The ML estimator proposed exhibits a high level of efficiency and robustness.
ArticleNumber 108261
Author Diaz-Infante, Saul
Gomez, Eduardo Lince
Delgado-Vences, Francisco
Baltazar-Larios, Fernando
Author_xml – sequence: 1
  givenname: Fernando
  surname: Baltazar-Larios
  fullname: Baltazar-Larios, Fernando
  organization: Facultad de Ciencias - Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
– sequence: 2
  givenname: Francisco
  orcidid: 0000-0002-0880-720X
  surname: Delgado-Vences
  fullname: Delgado-Vences, Francisco
  email: delgado@im.unam.mx
  organization: Conahcyt Research Fellow - Universidad Nacional Autónoma de México. Instituto de Matemáticas, Oaxaca de Juarez, Mexico
– sequence: 3
  givenname: Saul
  orcidid: 0000-0001-9559-1293
  surname: Diaz-Infante
  fullname: Diaz-Infante, Saul
  organization: Conahcyt Research Fellow - Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo, 83000, Sonora, Mexico
– sequence: 4
  givenname: Eduardo Lince
  surname: Gomez
  fullname: Gomez, Eduardo Lince
  organization: Facultad de Ciencias - Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
BookMark eNp9kE1PAyEQhjnUxLb6C7zwB7YCu-yyBw-m8aNJE2PUM6EwVDYrKKCJ_nr3w7OnSWbmeTPzrNDCBw8IXVCyoYTWl91G--TThhFWDR3BarpAS0pIU_CGVKdolVJHhs2WV0v0-JRVdik7rXrsvIUIXgO2IWKFUw76VY1DfAQPUfXuBwzuw3EisHF2ArIbYPj4HJKCP0MnVvUJzv_qGr3c3jxv74v9w91ue70vNKMlLRpmOCtNSy0FTuxBGVOCMUJoAZSTtmoJaF6VQkMNB6YNaWtlueEgKhBClWtUzrk6hpQiWPke3ZuK35ISOZqQnZxMyNGEnE0M1NVMwXDal4Mok3bjy8ZF0Fma4P7lfwEhTm5a
Cites_doi 10.1007/s00477-022-02170-w
10.3847/1538-4357/aaec08
10.1002/wics.1585
10.1016/j.camwa.2008.01.006
10.1007/BF02309004
10.1093/jxb/10.2.290
10.1016/j.cnsns.2018.12.013
10.1016/j.aml.2012.12.015
10.1016/j.cnsns.2022.106832
10.3150/12-BEJ501
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cnsns.2024.108261
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
ExternalDocumentID 10_1016_j_cnsns_2024_108261
S1007570424004465
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
6I.
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXDM
AAXKI
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c2131-72d523d91f1e50fbadd3edd88c8e1509490ec5438ce6eb2cd096af5d5e84e88a3
ISSN 1007-5704
IngestDate Sat Nov 29 02:23:15 EST 2025
Sat Feb 08 15:51:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Maximum likelihood estimation
60H10
Stochastic generalized logistic differential equation
Expectation maximization algorithm
Biological growth
62F10
Diffusion bridges
60H35
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2131-72d523d91f1e50fbadd3edd88c8e1509490ec5438ce6eb2cd096af5d5e84e88a3
ORCID 0000-0001-9559-1293
0000-0002-0880-720X
OpenAccessLink https://dx.doi.org/10.1016/j.cnsns.2024.108261
ParticipantIDs crossref_primary_10_1016_j_cnsns_2024_108261
elsevier_sciencedirect_doi_10_1016_j_cnsns_2024_108261
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References McLachlan, Krishnan (b6) 1997
Schurz (b13) 2007; 4
Craigmile, Herbei, Liu, Schneider (b14) 2023; 15
Delgado-Vences, Baltazar-Larios, Ornelas Vargas, Morales-Bojórquez, Cruz-Escalona, Salomón Aguilar (b17) 2022; 49
Braun, Golubitsky (b10) 1983
Suryawan (b4) 2018
Liu, Wang (b11) 2013; 26
Bladt, Sørensen (b20) 2014; 20
Küchler, Sørensen (b21) 2006
Baltazar-Larios F, Delgado-Vences F, Diaz-Infante S, Lince-Gomez E. The collection of source code and data for tables and figures for ‘statistical inference for a stochastic generalized logistic differential equation’. GitHub
Iacus (b7) 2009
Cortés, Navarro-Quiles, Romero, Roselló (b5) 2019; 72
Grimmett, Stirzaker (b22) 2020
.
Panik (b3) 2017
Vogels, Zoeckler, Stasiw, Cerny (b8) 1975; 3
Liptser, Shiryaev (b19) 2001
Wei-Cheng (b18) 2006; 1
Qin, Wu (b9) 2018; 869
Calatayud, Jornet, Mateu (b16) 2022; 36
Richards (b1) 1959; 10
Bevia, Calatayud, Cortés, Jornet (b15) 2023; 116
France, Thornley (b2) 1984
Braumann (b12) 2008; 56
Wei-Cheng (10.1016/j.cnsns.2024.108261_b18) 2006; 1
Braumann (10.1016/j.cnsns.2024.108261_b12) 2008; 56
Bladt (10.1016/j.cnsns.2024.108261_b20) 2014; 20
Craigmile (10.1016/j.cnsns.2024.108261_b14) 2023; 15
Suryawan (10.1016/j.cnsns.2024.108261_b4) 2018
Braun (10.1016/j.cnsns.2024.108261_b10) 1983
Küchler (10.1016/j.cnsns.2024.108261_b21) 2006
Liu (10.1016/j.cnsns.2024.108261_b11) 2013; 26
Bevia (10.1016/j.cnsns.2024.108261_b15) 2023; 116
Calatayud (10.1016/j.cnsns.2024.108261_b16) 2022; 36
Iacus (10.1016/j.cnsns.2024.108261_b7) 2009
Schurz (10.1016/j.cnsns.2024.108261_b13) 2007; 4
Qin (10.1016/j.cnsns.2024.108261_b9) 2018; 869
10.1016/j.cnsns.2024.108261_b23
France (10.1016/j.cnsns.2024.108261_b2) 1984
Delgado-Vences (10.1016/j.cnsns.2024.108261_b17) 2022; 49
Richards (10.1016/j.cnsns.2024.108261_b1) 1959; 10
Vogels (10.1016/j.cnsns.2024.108261_b8) 1975; 3
Grimmett (10.1016/j.cnsns.2024.108261_b22) 2020
Liptser (10.1016/j.cnsns.2024.108261_b19) 2001
McLachlan (10.1016/j.cnsns.2024.108261_b6) 1997
Panik (10.1016/j.cnsns.2024.108261_b3) 2017
Cortés (10.1016/j.cnsns.2024.108261_b5) 2019; 72
References_xml – volume: 10
  start-page: 290
  year: 1959
  end-page: 300
  ident: b1
  article-title: A flexible growth function for empirical use
  publication-title: J Exp Bot
– year: 2001
  ident: b19
  article-title: S of random processes: I. General theory (Vol. 1)
– start-page: xi+
  year: 1984
  end-page: 335
  ident: b2
  article-title: Mathematical models in agriculture
– volume: 3
  start-page: 183
  year: 1975
  end-page: 192
  ident: b8
  article-title: P. F. Verhulst’s notice sur la loi que la populations suit dans son accroissement from correspondence mathematique et physique. Ghent, vol. X, 1838
  publication-title: J Biol Phys
– volume: 26
  start-page: 601
  year: 2013
  end-page: 606
  ident: b11
  article-title: A note on stability of stochastic logistic equation
  publication-title: Appl Math Lett
– volume: 49
  start-page: 1
  year: 2022
  end-page: 24
  ident: b17
  article-title: Inference for a discretized stochastic logistic differential equation and its application to biological growth
  publication-title: J Appl Stat
– year: 2006
  ident: b21
  article-title: Exponential families of stochastic processes
– volume: 869
  start-page: 48
  year: 2018
  ident: b9
  article-title: A model of sunspot number with a modified logistic function
  publication-title: Astrophys J
– volume: 20
  start-page: 645
  year: 2014
  end-page: 675
  ident: b20
  article-title: Simple simulation of diffusion bridges with application to likelihood inference for diffusions
  publication-title: Bernoulli
– reference: .
– volume: 36
  start-page: 2907
  year: 2022
  end-page: 2917
  ident: b16
  article-title: A stochastic Bayesian bootstrapping model for COVID-19 data
  publication-title: Stoch Environ Res Risk Assess
– volume: 15
  year: 2023
  ident: b14
  article-title: Statistical inference for stochastic differential equations
  publication-title: Wiley Interdiscip Rev Comput Stat
– year: 1983
  ident: b10
  article-title: Differential equations and their applications (Vol. 1)
– year: 1997
  ident: b6
  article-title: The EM algorithm and extensions
– volume: 1
  start-page: 763
  year: 2006
  end-page: 776
  ident: b18
  article-title: Estimation of diffusion parameters in diffusion processes and their asymptotic normality
  publication-title: Int J Contemp Math Sci
– reference: Baltazar-Larios F, Delgado-Vences F, Diaz-Infante S, Lince-Gomez E. The collection of source code and data for tables and figures for ‘statistical inference for a stochastic generalized logistic differential equation’. GitHub,
– volume: 116
  year: 2023
  ident: b15
  article-title: On the generalized logistic random differential equation: Theoretical analysis and numerical simulations with real-world data
  publication-title: Commun Nonlinear Sci Numer Simul
– year: 2018
  ident: b4
  article-title: Analytic solution of a stochastic richards equation driven by Brownian motion
  publication-title: Journal of physics: conference series, Vol. 1097
– volume: 56
  start-page: 631
  year: 2008
  end-page: 644
  ident: b12
  article-title: Growth and extinction of populations in randomly varying environments
  publication-title: Comput Math Appl
– year: 2017
  ident: b3
  article-title: Stochastic differential equations: an introduction with applications in population dynamics modeling
– volume: 4
  start-page: 178
  year: 2007
  end-page: 197
  ident: b13
  article-title: Modeling, analysis and discretization of stochastic logistic equations
  publication-title: Int J Numer Anal Model
– year: 2009
  ident: b7
  article-title: Simulation and inference for stochastic differential equations: with R examples
– volume: 72
  start-page: 121
  year: 2019
  end-page: 138
  ident: b5
  article-title: Analysis of random non-autonomous logistic-type differential equations via the Karhunen–Loève expansion and the random variable transformation technique
  publication-title: Commun Nonlinear Sci Numer Simul
– year: 2020
  ident: b22
  article-title: Probability and random processes
– year: 1983
  ident: 10.1016/j.cnsns.2024.108261_b10
– year: 2017
  ident: 10.1016/j.cnsns.2024.108261_b3
– volume: 36
  start-page: 2907
  issue: 9
  year: 2022
  ident: 10.1016/j.cnsns.2024.108261_b16
  article-title: A stochastic Bayesian bootstrapping model for COVID-19 data
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-022-02170-w
– year: 2006
  ident: 10.1016/j.cnsns.2024.108261_b21
– volume: 869
  start-page: 48
  year: 2018
  ident: 10.1016/j.cnsns.2024.108261_b9
  article-title: A model of sunspot number with a modified logistic function
  publication-title: Astrophys J
  doi: 10.3847/1538-4357/aaec08
– volume: 15
  issue: 2
  year: 2023
  ident: 10.1016/j.cnsns.2024.108261_b14
  article-title: Statistical inference for stochastic differential equations
  publication-title: Wiley Interdiscip Rev Comput Stat
  doi: 10.1002/wics.1585
– volume: 56
  start-page: 631
  issue: 3
  year: 2008
  ident: 10.1016/j.cnsns.2024.108261_b12
  article-title: Growth and extinction of populations in randomly varying environments
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2008.01.006
– year: 2020
  ident: 10.1016/j.cnsns.2024.108261_b22
– volume: 3
  start-page: 183
  year: 1975
  ident: 10.1016/j.cnsns.2024.108261_b8
  article-title: P. F. Verhulst’s notice sur la loi que la populations suit dans son accroissement from correspondence mathematique et physique. Ghent, vol. X, 1838
  publication-title: J Biol Phys
  doi: 10.1007/BF02309004
– year: 2018
  ident: 10.1016/j.cnsns.2024.108261_b4
  article-title: Analytic solution of a stochastic richards equation driven by Brownian motion
– year: 1997
  ident: 10.1016/j.cnsns.2024.108261_b6
– year: 2001
  ident: 10.1016/j.cnsns.2024.108261_b19
– volume: 1
  start-page: 763
  year: 2006
  ident: 10.1016/j.cnsns.2024.108261_b18
  article-title: Estimation of diffusion parameters in diffusion processes and their asymptotic normality
  publication-title: Int J Contemp Math Sci
– ident: 10.1016/j.cnsns.2024.108261_b23
– volume: 4
  start-page: 178
  issue: 2
  year: 2007
  ident: 10.1016/j.cnsns.2024.108261_b13
  article-title: Modeling, analysis and discretization of stochastic logistic equations
  publication-title: Int J Numer Anal Model
– volume: 10
  start-page: 290
  year: 1959
  ident: 10.1016/j.cnsns.2024.108261_b1
  article-title: A flexible growth function for empirical use
  publication-title: J Exp Bot
  doi: 10.1093/jxb/10.2.290
– volume: 72
  start-page: 121
  year: 2019
  ident: 10.1016/j.cnsns.2024.108261_b5
  article-title: Analysis of random non-autonomous logistic-type differential equations via the Karhunen–Loève expansion and the random variable transformation technique
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2018.12.013
– volume: 26
  start-page: 601
  issue: 6
  year: 2013
  ident: 10.1016/j.cnsns.2024.108261_b11
  article-title: A note on stability of stochastic logistic equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2012.12.015
– volume: 116
  year: 2023
  ident: 10.1016/j.cnsns.2024.108261_b15
  article-title: On the generalized logistic random differential equation: Theoretical analysis and numerical simulations with real-world data
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2022.106832
– year: 2009
  ident: 10.1016/j.cnsns.2024.108261_b7
– volume: 20
  start-page: 645
  year: 2014
  ident: 10.1016/j.cnsns.2024.108261_b20
  article-title: Simple simulation of diffusion bridges with application to likelihood inference for diffusions
  publication-title: Bernoulli
  doi: 10.3150/12-BEJ501
– start-page: xi+
  year: 1984
  ident: 10.1016/j.cnsns.2024.108261_b2
– volume: 49
  start-page: 1
  year: 2022
  ident: 10.1016/j.cnsns.2024.108261_b17
  article-title: Inference for a discretized stochastic logistic differential equation and its application to biological growth
  publication-title: J Appl Stat
SSID ssj0016954
Score 2.4167936
Snippet In this research we aim to estimate three parameters in a stochastic generalized logistic differential equation. We assume the intrinsic growth rate and shape...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108261
SubjectTerms Biological growth
Diffusion bridges
Expectation maximization algorithm
Maximum likelihood estimation
Stochastic generalized logistic differential equation
Title Statistical inference for a stochastic generalized logistic differential equation
URI https://dx.doi.org/10.1016/j.cnsns.2024.108261
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016954
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ogCrfbALRjF69f6WKFQWqEKREG5WfsypEqdkkdV5afwa5nZh201CAESFyvaxOto5vN6dvzNN4S8lGUtZM7LKMlzHaXYyF1maRIpLUc6znOpVGqbTRSnp3wyKT8MBj9CLczVrGgafn1dXv5XV8MYOBtLZ__C3e2kMACfwelwBLfD8Y8cj-GjVV-2chpBRtaSJYcQ6alvAr_E1smYjppuIOJ0ZUAwGNqlrDCPbr6vO7cFMYN-PYml0jZOa0MshqFCCMHUrN2boNlwOb3wHcK6pOlsJTZiEb2Hfbpj-fls9rwNq83sq9Dz6ItleYcAW02XqvvJVGyi46ZGZLjUdkdxPJpfuMT4WOMdMMfMg0ewT3Cw9AZZZLvyxi7UmGLNCte6uF3JnS7S1lPBJSjOX6tm2aBEO0uRWsmcCvwNue1PODNOjORaVJO7RXZZkZWwYu4eHo8nJ-07qry0PfbafxI0rSx7cOtSv457erHM2X1y129C6KEDzwMyMM1Dcs9vSKhf7pePyMcelmiLJQpYooJ2WKI9LNGAJdrHEg1Yekw-vx2fvXkX-R4ckWJxEkcF0xlLdBnXsclGtYTHYWK05lxxE6P4YjkyCm5urkxuJFMatsSiznRmeGo4F8kTsgNANE8JVUKxUprExuA6SWURy1wwk8YFqhiKPfIqWKi6dFIrVeAgnlfWoBUatHIG3SN5sGLlAe6iwArc_rsTn_3ric_JnQ6fL8jOarE2--S2ugJPLA48PH4Cel2WwQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+for+a+stochastic+generalized+logistic+differential+equation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Baltazar-Larios%2C+Fernando&rft.au=Delgado-Vences%2C+Francisco&rft.au=Diaz-Infante%2C+Saul&rft.au=Gomez%2C+Eduardo+Lince&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.volume=139&rft_id=info:doi/10.1016%2Fj.cnsns.2024.108261&rft.externalDocID=S1007570424004465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon