Data-driven traffic sensor location and path flow estimation using Wasserstein metric

This paper introduces link information value obtained by the traffic sensors and presents a traffic sensor location and flow estimation joint optimization model in an urban road network. In contrast to most previous studies, this paper adds new traffic sensors into the existing sensor network and pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling Jg. 133; S. 211 - 231
Hauptverfasser: Gao, Jiaqi, Yang, Kai, Shen, Mengru, Yang, Lixing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.2024
Schlagworte:
ISSN:0307-904X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper introduces link information value obtained by the traffic sensors and presents a traffic sensor location and flow estimation joint optimization model in an urban road network. In contrast to most previous studies, this paper adds new traffic sensors into the existing sensor network and proposes a data-driven path flow measurement method based on Wasserstein metric, which is utilized to measure the distance between the estimated traffic flow distribution and the actual distribution. Furthermore, this paper develops a customized greedy algorithm by combining a search strategy for the link information value to obtain the optimal sensor location scheme and perform traffic flow estimation under different budget conditions. Numerical experiments are conducted on Sioux-Falls test network and Eastern Massachusetts interstate highway subnetwork to verify the accuracy and effectiveness of the proposed model based on Wasserstein metric and the developed solution method. Computational results show that the sensor location scheme generated by the model based on Wasserstein metric can reduce the estimation error of the traffic flow compared with KL divergence model under the same deployment cost. Additionally, the customized greedy algorithm can achieve the better performance than the Brute force algorithm in terms of computing time and solution quality. •A traffic sensor location and path flow estimation joint optimization model is formulated.•A data-driven path flow measurement method based on Wasserstein metric is proposed.•A customized greedy algorithm by combining a search strategy is developed.•Numerical experiments are conducted based on the real-word transportation network.
AbstractList This paper introduces link information value obtained by the traffic sensors and presents a traffic sensor location and flow estimation joint optimization model in an urban road network. In contrast to most previous studies, this paper adds new traffic sensors into the existing sensor network and proposes a data-driven path flow measurement method based on Wasserstein metric, which is utilized to measure the distance between the estimated traffic flow distribution and the actual distribution. Furthermore, this paper develops a customized greedy algorithm by combining a search strategy for the link information value to obtain the optimal sensor location scheme and perform traffic flow estimation under different budget conditions. Numerical experiments are conducted on Sioux-Falls test network and Eastern Massachusetts interstate highway subnetwork to verify the accuracy and effectiveness of the proposed model based on Wasserstein metric and the developed solution method. Computational results show that the sensor location scheme generated by the model based on Wasserstein metric can reduce the estimation error of the traffic flow compared with KL divergence model under the same deployment cost. Additionally, the customized greedy algorithm can achieve the better performance than the Brute force algorithm in terms of computing time and solution quality. •A traffic sensor location and path flow estimation joint optimization model is formulated.•A data-driven path flow measurement method based on Wasserstein metric is proposed.•A customized greedy algorithm by combining a search strategy is developed.•Numerical experiments are conducted based on the real-word transportation network.
Author Yang, Lixing
Gao, Jiaqi
Shen, Mengru
Yang, Kai
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Gao
  fullname: Gao, Jiaqi
  email: 22120819@bjtu.edu.cn
  organization: School of Systems Science, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 2
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  email: kaiyang@bjtu.edu.cn
  organization: School of Systems Science, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 3
  givenname: Mengru
  surname: Shen
  fullname: Shen, Mengru
  email: mrshen@bjtu.edu.cn
  organization: School of Traffic and Transportation, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 4
  givenname: Lixing
  surname: Yang
  fullname: Yang, Lixing
  email: lxyang@bjtu.edu.cn
  organization: School of Systems Science, Beijing Jiaotong University, Beijing, 100044, China
BookMark eNp9kM9OwzAMh3MYEtvgAbjlBVqcNGk7cULjr4TEhQluUZo6kKlLpyQM8fZkjBOHnSzL_iz_vhmZ-NEjIRcMSgasvlyXerspOXBRgiyBswmZQgVNsQDxdkpmMa4BQOZuSlY3OumiD26HnqagrXWGRvRxDHQYjU5u9FT7nm51-qB2GL8oxuQ2h8FndP6dvuoYMcSEztMNpuDMGTmxeoh4_lfnZHV3-7J8KJ6e7x-X10-F4Yynom9lU2nRoBAd9u2i023dgWGi7kxjhWaWW6t51dV5Q4q2BymwbutGmopJhGpOmsNdE8YYA1plXPp9LUdxg2Kg9kbUWmUjam9EgVTZSCbZP3IbcqrwfZS5OjCYI-0cBhWNQ2-wdwFNUv3ojtA_Wgt-9g
CitedBy_id crossref_primary_10_1016_j_apm_2024_115683
crossref_primary_10_1016_j_eswa_2025_127000
Cites_doi 10.1016/j.trb.2017.05.013
10.1016/j.trc.2010.07.001
10.1007/s10107-017-1172-1
10.1016/j.trb.2012.08.007
10.1016/j.cor.2021.105596
10.1016/j.trc.2021.103460
10.1109/JPROC.2018.2790405
10.1016/0191-2615(88)90024-0
10.1016/j.apm.2013.02.006
10.1016/j.trc.2015.03.023
10.1016/j.trb.2007.09.004
10.1016/S0191-2615(97)00016-7
10.1016/j.trb.2022.10.006
10.1016/j.trb.2016.03.011
10.1016/j.eswa.2022.118134
10.1016/j.trb.2014.06.002
10.1287/opre.2017.1698
10.1109/MITS.2018.2806620
10.3141/2308-03
10.1109/MITS.2018.2806639
10.1016/j.tre.2021.102555
10.1016/j.ejor.2015.05.070
10.1016/j.apm.2021.07.003
10.1016/j.trb.2018.05.009
10.1016/j.trb.2013.02.006
10.1016/j.trb.2017.08.007
10.1016/j.trc.2013.12.005
10.3141/2039-01
10.1007/s10479-005-2047-z
10.1016/j.trb.2009.02.008
10.1049/iet-its.2014.0023
10.1016/j.ejor.2021.10.038
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2024.05.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 231
ExternalDocumentID 10_1016_j_apm_2024_05_021
S0307904X24002476
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c212t-d8573a47e44bed89ba86b0c146bc7f4a1f2ffa23b6e44548d054e68675c315e03
ISSN 0307-904X
IngestDate Sat Nov 29 06:34:27 EST 2025
Tue Nov 18 20:29:12 EST 2025
Tue Jun 18 08:52:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Flow estimation
Greedy algorithm
Sensor location
Transportation planning
Wasserstein metric
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c212t-d8573a47e44bed89ba86b0c146bc7f4a1f2ffa23b6e44548d054e68675c315e03
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_apm_2024_05_021
crossref_primary_10_1016_j_apm_2024_05_021
elsevier_sciencedirect_doi_10_1016_j_apm_2024_05_021
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Applied mathematical modelling
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References He (br0120) 2013; 51
Sun, Zhong, Ma, Liu (br0260) 2020; 38
Fei, Mahmassani, Eisenman (br0220) 2007; 2039
Park, Haghani (br0300) 2015; 55
Shao, Xie, Sun (br0210) 2021; 133
Comert, Cetin (br0180) 2021; 99
Esfahani, Kuhn (br0340) 2018; 171
Jarray (br0350) 2013; 37
Hadavi, Shafahi (br0140) 2016; 89
Zhu, Fu, Zhang, Ma (br0270) 2022; 300
Fu, Lam, Shao, Ma, Chen, Ho (br0360) 2022; 166
Wang, Zhong, Xu (br0250) 2022; 39
Fei, Mahmassani (br0050) 2011; 19
Ye, Wen (br0070) 2017; 18
Castillo, Menéndez, Jiménez (br0060) 2008; 42
Rinaldi, Viti (br0190) 2017; 105
Shao, Lam, Sumalee, Chen, Hazelton (br0290) 2014; 68
Liu, Zhu, Ma, Jia (br0200) 2015; 9
Cascetta, Nguyen (br0280) 1988; 22
Herrera-Quintero, Vega-Alfonso, Banse, Carrillo Zambrano (br0160) 2018; 10
Zhu, Fu, Ma (br0020) 2018; 113
Zhan, Wan, Cheng, Ran (br0080) 2018; 10
Hu, Peeta, Liou (br0150) 2016; 17
Gentili, Cerulli, Cerrone (br0130) 2015; 247
He, Sun (br0110) 2016; 16
Zhang, Pourazarm, Cassandras, Paschalidis (br0380) 2016
Álvarez Bazo, Cerulli, Sánchez-Cambronero, Gentili, Rivas (br0240) 2022; 138
Hu, Peeta, Chu (br0100) 2009; 43
Zhang, Pourazarm, Cassandras, Paschalidis (br0390) 2018; 106
Yao, Hu, Lu, Gao, Zhang (br0040) 2014; 43
Gentili, Mirchandani (br0090) 2005; 136
Owais (br0010) 2022; 208
Hanasusanto, Kuhn (br0330) 2018; 66
Ma, Li, Wen (br0370) 2007; 36
Thike, Lupin, Vagapov (br0400) 2016
Fu, Lam, Shao, Kattan, Salari (br0320) 2022; 157
Barcelo, Gillieron, Linares, Serch, Montero (br0170) 2012; 2308
Fu, Zhu, Ma (br0230) 2017; 102
Simonelli, Marzano, Papola, Vitiello (br0310) 2012; 46
Yang, Zhou (br0030) 1998; 32
Yao (10.1016/j.apm.2024.05.021_br0040) 2014; 43
Hu (10.1016/j.apm.2024.05.021_br0150) 2016; 17
Fu (10.1016/j.apm.2024.05.021_br0360) 2022; 166
Fu (10.1016/j.apm.2024.05.021_br0230) 2017; 102
He (10.1016/j.apm.2024.05.021_br0110) 2016; 16
Cascetta (10.1016/j.apm.2024.05.021_br0280) 1988; 22
Zhang (10.1016/j.apm.2024.05.021_br0390) 2018; 106
Park (10.1016/j.apm.2024.05.021_br0300) 2015; 55
Gentili (10.1016/j.apm.2024.05.021_br0130) 2015; 247
Álvarez Bazo (10.1016/j.apm.2024.05.021_br0240) 2022; 138
Wang (10.1016/j.apm.2024.05.021_br0250) 2022; 39
Yang (10.1016/j.apm.2024.05.021_br0030) 1998; 32
Barcelo (10.1016/j.apm.2024.05.021_br0170) 2012; 2308
Hadavi (10.1016/j.apm.2024.05.021_br0140) 2016; 89
Zhu (10.1016/j.apm.2024.05.021_br0020) 2018; 113
Fei (10.1016/j.apm.2024.05.021_br0050) 2011; 19
Gentili (10.1016/j.apm.2024.05.021_br0090) 2005; 136
Hu (10.1016/j.apm.2024.05.021_br0100) 2009; 43
Shao (10.1016/j.apm.2024.05.021_br0290) 2014; 68
Comert (10.1016/j.apm.2024.05.021_br0180) 2021; 99
Fu (10.1016/j.apm.2024.05.021_br0320) 2022; 157
Ye (10.1016/j.apm.2024.05.021_br0070) 2017; 18
Ma (10.1016/j.apm.2024.05.021_br0370) 2007; 36
Liu (10.1016/j.apm.2024.05.021_br0200) 2015; 9
Sun (10.1016/j.apm.2024.05.021_br0260) 2020; 38
Fei (10.1016/j.apm.2024.05.021_br0220) 2007; 2039
Esfahani (10.1016/j.apm.2024.05.021_br0340) 2018; 171
Zhang (10.1016/j.apm.2024.05.021_br0380) 2016
Zhan (10.1016/j.apm.2024.05.021_br0080) 2018; 10
Castillo (10.1016/j.apm.2024.05.021_br0060) 2008; 42
Rinaldi (10.1016/j.apm.2024.05.021_br0190) 2017; 105
Zhu (10.1016/j.apm.2024.05.021_br0270) 2022; 300
Hanasusanto (10.1016/j.apm.2024.05.021_br0330) 2018; 66
Thike (10.1016/j.apm.2024.05.021_br0400) 2016
Simonelli (10.1016/j.apm.2024.05.021_br0310) 2012; 46
Owais (10.1016/j.apm.2024.05.021_br0010) 2022; 208
He (10.1016/j.apm.2024.05.021_br0120) 2013; 51
Herrera-Quintero (10.1016/j.apm.2024.05.021_br0160) 2018; 10
Shao (10.1016/j.apm.2024.05.021_br0210) 2021; 133
Jarray (10.1016/j.apm.2024.05.021_br0350) 2013; 37
References_xml – volume: 247
  start-page: 618
  year: 2015
  end-page: 629
  ident: br0130
  article-title: Vehicle-id sensor location for route flow recognition: models and algorithms
  publication-title: Eur. J. Oper. Res.
– volume: 89
  start-page: 82
  year: 2016
  end-page: 106
  ident: br0140
  article-title: Vehicle identification sensor models for origin–destination estimation
  publication-title: Transp. Res., Part B, Methodol.
– volume: 17
  start-page: 195
  year: 2016
  end-page: 205
  ident: br0150
  article-title: Integrated determination of network origin–destination trip matrix and heterogeneous sensor selection and location strategy
  publication-title: J. Intell. Transp. Syst.
– volume: 138
  year: 2022
  ident: br0240
  article-title: An iterative multiparametric approach for determining the location of avi sensors for robust route flow estimation
  publication-title: Comput. Oper. Res.
– volume: 166
  start-page: 19
  year: 2022
  end-page: 47
  ident: br0360
  article-title: Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects
  publication-title: Transp. Res., Part B, Methodol.
– volume: 37
  start-page: 6780
  year: 2013
  end-page: 6785
  ident: br0350
  article-title: A lagrangean-based heuristics for the target covering problem in wireless sensor network
  publication-title: Appl. Math. Model.
– volume: 22
  start-page: 437
  year: 1988
  end-page: 455
  ident: br0280
  article-title: A unified framework for estimating or updating origin/destination matrices from traffic counts
  publication-title: Transp. Res., Part B, Methodol.
– volume: 10
  start-page: 17
  year: 2018
  end-page: 27
  ident: br0160
  article-title: Smart its sensor for the transportation planning based on iot approaches using serverless and microservices architecture
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 66
  start-page: 849
  year: 2018
  end-page: 869
  ident: br0330
  article-title: Conic programming reformulations of two-stage distributionally robust linear programs over Wasserstein balls
  publication-title: Oper. Res.
– volume: 106
  start-page: 538
  year: 2018
  end-page: 553
  ident: br0390
  article-title: The price of anarchy in transportation networks: data-driven evaluation and reduction strategies
  publication-title: Proc. IEEE
– volume: 10
  start-page: 134
  year: 2018
  end-page: 149
  ident: br0080
  article-title: Methods for multi-type sensor allocations along a freeway corridor
  publication-title: IEEE Intell. Transp. Syst. Mag.
– volume: 39
  start-page: 158
  year: 2022
  end-page: 164
  ident: br0250
  article-title: Layout of expressway traffic detectors considering failure factors
  publication-title: J. Highw. Transp. Res. Dev.
– volume: 113
  start-page: 91
  year: 2018
  end-page: 120
  ident: br0020
  article-title: Data-driven distributionally robust optimization approach for reliable travel-time-information-gain-oriented traffic sensor location model
  publication-title: Transp. Res., Part B, Methodol.
– volume: 43
  start-page: 873
  year: 2009
  end-page: 894
  ident: br0100
  article-title: Identification of vehicle sensor locations for link-based network traffic applications
  publication-title: Transp. Res., Part B, Methodol.
– volume: 136
  start-page: 229
  year: 2005
  end-page: 257
  ident: br0090
  article-title: Locating active sensors on traffic networks
  publication-title: Ann. Oper. Res.
– volume: 99
  start-page: 418
  year: 2021
  end-page: 434
  ident: br0180
  article-title: Queue length estimation from connected vehicles with range measurement sensors at traffic signals
  publication-title: Appl. Math. Model.
– volume: 19
  start-page: 440
  year: 2011
  end-page: 453
  ident: br0050
  article-title: Structural analysis of near-optimal sensor locations for a stochastic large-scale network
  publication-title: Transp. Res., Part C, Emerg. Technol.
– volume: 2039
  start-page: 1
  year: 2007
  end-page: 15
  ident: br0220
  article-title: Sensor coverage and location for real-time traffic prediction in large-scale networks
  publication-title: Transp. Res. Rec.
– volume: 42
  start-page: 455
  year: 2008
  end-page: 481
  ident: br0060
  article-title: Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations
  publication-title: Transp. Res., Part B, Methodol.
– volume: 171
  start-page: 115
  year: 2018
  end-page: 166
  ident: br0340
  article-title: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations
  publication-title: Math. Program.
– volume: 55
  start-page: 203
  year: 2015
  end-page: 216
  ident: br0300
  article-title: Optimal number and location of bluetooth sensors considering stochastic travel time prediction
  publication-title: Transp. Res., Part C, Emerg. Technol.
– start-page: 789
  year: 2016
  end-page: 794
  ident: br0380
  article-title: The price of anarchy in transportation networks by estimating user cost functions from actual traffic data
  publication-title: 2016 IEEE 55th Conference on Decision and Control
– volume: 43
  start-page: 233
  year: 2014
  end-page: 248
  ident: br0040
  article-title: Transit network design based on travel time reliability
  publication-title: Transp. Res., Part C, Emerg. Technol.
– volume: 208
  year: 2022
  ident: br0010
  article-title: Traffic sensor location problem: three decades of research
  publication-title: Expert Syst. Appl.
– volume: 2308
  start-page: 17
  year: 2012
  end-page: 26
  ident: br0170
  article-title: Exploring link covering and node covering formulations of detection layout problem
  publication-title: Transp. Res. Rec.
– volume: 102
  start-page: 210
  year: 2017
  end-page: 237
  ident: br0230
  article-title: A stochastic program approach for path reconstruction oriented sensor location model
  publication-title: Transp. Res., Part B, Methodol.
– volume: 157
  year: 2022
  ident: br0320
  article-title: Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects
  publication-title: Transp. Res., Part E, Logist. Transp. Rev.
– volume: 68
  start-page: 52
  year: 2014
  end-page: 75
  ident: br0290
  article-title: Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts
  publication-title: Transp. Res., Part B, Methodol.
– volume: 36
  start-page: 235
  year: 2007
  end-page: 239
  ident: br0370
  article-title: Research on location of traffic observation points for origin-destination matrix estimation
  publication-title: Inf. Control
– volume: 16
  start-page: 6
  year: 2016
  ident: br0110
  article-title: An algebraic and graphic combination approach to solve network sensor location problems
  publication-title: J. Transp. Syst. Eng. Inf. Technol.
– start-page: 264
  year: 2016
  end-page: 268
  ident: br0400
  article-title: Implementation of brute force algorithm for topology optimisation of wireless networks
  publication-title: 2016 International Conference for Students on Applied Engineering (ICSAE)
– volume: 46
  start-page: 1624
  year: 2012
  end-page: 1638
  ident: br0310
  article-title: A network sensor location procedure accounting for o–d matrix estimate variability
  publication-title: Transp. Res., Part B, Methodol.
– volume: 9
  start-page: 184
  year: 2015
  end-page: 192
  ident: br0200
  article-title: Traffic sensor location approach for flow inference
  publication-title: IET Intell. Transp. Syst.
– volume: 105
  start-page: 86
  year: 2017
  end-page: 119
  ident: br0190
  article-title: Exact and approximate route set generation for resilient partial observability in sensor location problems
  publication-title: Transp. Res., Part B, Methodol.
– volume: 300
  start-page: 428
  year: 2022
  end-page: 448
  ident: br0270
  article-title: A network sensor location problem for link flow observability and estimation
  publication-title: Eur. J. Oper. Res.
– volume: 51
  start-page: 65
  year: 2013
  end-page: 76
  ident: br0120
  article-title: A graphical approach to identify sensor locations for link flow inference
  publication-title: Transp. Res., Part B, Methodol.
– volume: 38
  start-page: 76
  year: 2020
  end-page: 83
  ident: br0260
  article-title: A study on improved imputation methods for traffic flow data based on spatial topology of road network
  publication-title: J. Transp. Saf. Secur.
– volume: 32
  start-page: 524
  year: 1998
  end-page: 534
  ident: br0030
  article-title: Optimal traffic counting locations for origin-destination matrix estimation
  publication-title: Transp. Res., Part B, Methodol.
– volume: 18
  start-page: 1857
  year: 2017
  end-page: 1866
  ident: br0070
  article-title: Optimal traffic sensor location for origin–destination estimation using a compressed sensing framework
  publication-title: J. Intell. Transp. Syst.
– volume: 133
  year: 2021
  ident: br0210
  article-title: Optimization of network sensor location for full link flow observability considering sensor measurement error
  publication-title: Transp. Res., Part C, Emerg. Technol.
– volume: 102
  start-page: 210
  year: 2017
  ident: 10.1016/j.apm.2024.05.021_br0230
  article-title: A stochastic program approach for path reconstruction oriented sensor location model
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2017.05.013
– volume: 19
  start-page: 440
  issue: 3
  year: 2011
  ident: 10.1016/j.apm.2024.05.021_br0050
  article-title: Structural analysis of near-optimal sensor locations for a stochastic large-scale network
  publication-title: Transp. Res., Part C, Emerg. Technol.
  doi: 10.1016/j.trc.2010.07.001
– volume: 171
  start-page: 115
  year: 2018
  ident: 10.1016/j.apm.2024.05.021_br0340
  article-title: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1172-1
– volume: 46
  start-page: 1624
  issue: 10
  year: 2012
  ident: 10.1016/j.apm.2024.05.021_br0310
  article-title: A network sensor location procedure accounting for o–d matrix estimate variability
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2012.08.007
– volume: 138
  year: 2022
  ident: 10.1016/j.apm.2024.05.021_br0240
  article-title: An iterative multiparametric approach for determining the location of avi sensors for robust route flow estimation
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105596
– volume: 133
  year: 2021
  ident: 10.1016/j.apm.2024.05.021_br0210
  article-title: Optimization of network sensor location for full link flow observability considering sensor measurement error
  publication-title: Transp. Res., Part C, Emerg. Technol.
  doi: 10.1016/j.trc.2021.103460
– volume: 106
  start-page: 538
  issue: 4
  year: 2018
  ident: 10.1016/j.apm.2024.05.021_br0390
  article-title: The price of anarchy in transportation networks: data-driven evaluation and reduction strategies
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2790405
– volume: 22
  start-page: 437
  issue: 6
  year: 1988
  ident: 10.1016/j.apm.2024.05.021_br0280
  article-title: A unified framework for estimating or updating origin/destination matrices from traffic counts
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/0191-2615(88)90024-0
– volume: 37
  start-page: 6780
  issue: 10
  year: 2013
  ident: 10.1016/j.apm.2024.05.021_br0350
  article-title: A lagrangean-based heuristics for the target covering problem in wireless sensor network
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.02.006
– volume: 55
  start-page: 203
  year: 2015
  ident: 10.1016/j.apm.2024.05.021_br0300
  article-title: Optimal number and location of bluetooth sensors considering stochastic travel time prediction
  publication-title: Transp. Res., Part C, Emerg. Technol.
  doi: 10.1016/j.trc.2015.03.023
– volume: 42
  start-page: 455
  issue: 5
  year: 2008
  ident: 10.1016/j.apm.2024.05.021_br0060
  article-title: Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2007.09.004
– volume: 32
  start-page: 524
  issue: 2
  year: 1998
  ident: 10.1016/j.apm.2024.05.021_br0030
  article-title: Optimal traffic counting locations for origin-destination matrix estimation
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/S0191-2615(97)00016-7
– volume: 166
  start-page: 19
  year: 2022
  ident: 10.1016/j.apm.2024.05.021_br0360
  article-title: Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2022.10.006
– volume: 38
  start-page: 76
  year: 2020
  ident: 10.1016/j.apm.2024.05.021_br0260
  article-title: A study on improved imputation methods for traffic flow data based on spatial topology of road network
  publication-title: J. Transp. Saf. Secur.
– volume: 89
  start-page: 82
  year: 2016
  ident: 10.1016/j.apm.2024.05.021_br0140
  article-title: Vehicle identification sensor models for origin–destination estimation
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2016.03.011
– volume: 17
  start-page: 195
  issue: 1
  year: 2016
  ident: 10.1016/j.apm.2024.05.021_br0150
  article-title: Integrated determination of network origin–destination trip matrix and heterogeneous sensor selection and location strategy
  publication-title: J. Intell. Transp. Syst.
– volume: 208
  year: 2022
  ident: 10.1016/j.apm.2024.05.021_br0010
  article-title: Traffic sensor location problem: three decades of research
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118134
– volume: 68
  start-page: 52
  year: 2014
  ident: 10.1016/j.apm.2024.05.021_br0290
  article-title: Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2014.06.002
– volume: 66
  start-page: 849
  issue: 3
  year: 2018
  ident: 10.1016/j.apm.2024.05.021_br0330
  article-title: Conic programming reformulations of two-stage distributionally robust linear programs over Wasserstein balls
  publication-title: Oper. Res.
  doi: 10.1287/opre.2017.1698
– volume: 10
  start-page: 17
  issue: 2
  year: 2018
  ident: 10.1016/j.apm.2024.05.021_br0160
  article-title: Smart its sensor for the transportation planning based on iot approaches using serverless and microservices architecture
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2018.2806620
– volume: 36
  start-page: 235
  issue: 2
  year: 2007
  ident: 10.1016/j.apm.2024.05.021_br0370
  article-title: Research on location of traffic observation points for origin-destination matrix estimation
  publication-title: Inf. Control
– volume: 2308
  start-page: 17
  year: 2012
  ident: 10.1016/j.apm.2024.05.021_br0170
  article-title: Exploring link covering and node covering formulations of detection layout problem
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2308-03
– volume: 10
  start-page: 134
  issue: 2
  year: 2018
  ident: 10.1016/j.apm.2024.05.021_br0080
  article-title: Methods for multi-type sensor allocations along a freeway corridor
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2018.2806639
– volume: 157
  year: 2022
  ident: 10.1016/j.apm.2024.05.021_br0320
  article-title: Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects
  publication-title: Transp. Res., Part E, Logist. Transp. Rev.
  doi: 10.1016/j.tre.2021.102555
– volume: 18
  start-page: 1857
  issue: 7
  year: 2017
  ident: 10.1016/j.apm.2024.05.021_br0070
  article-title: Optimal traffic sensor location for origin–destination estimation using a compressed sensing framework
  publication-title: J. Intell. Transp. Syst.
– volume: 247
  start-page: 618
  issue: 2
  year: 2015
  ident: 10.1016/j.apm.2024.05.021_br0130
  article-title: Vehicle-id sensor location for route flow recognition: models and algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.05.070
– volume: 99
  start-page: 418
  year: 2021
  ident: 10.1016/j.apm.2024.05.021_br0180
  article-title: Queue length estimation from connected vehicles with range measurement sensors at traffic signals
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.07.003
– volume: 113
  start-page: 91
  year: 2018
  ident: 10.1016/j.apm.2024.05.021_br0020
  article-title: Data-driven distributionally robust optimization approach for reliable travel-time-information-gain-oriented traffic sensor location model
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2018.05.009
– volume: 51
  start-page: 65
  year: 2013
  ident: 10.1016/j.apm.2024.05.021_br0120
  article-title: A graphical approach to identify sensor locations for link flow inference
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2013.02.006
– volume: 105
  start-page: 86
  year: 2017
  ident: 10.1016/j.apm.2024.05.021_br0190
  article-title: Exact and approximate route set generation for resilient partial observability in sensor location problems
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2017.08.007
– volume: 43
  start-page: 233
  year: 2014
  ident: 10.1016/j.apm.2024.05.021_br0040
  article-title: Transit network design based on travel time reliability
  publication-title: Transp. Res., Part C, Emerg. Technol.
  doi: 10.1016/j.trc.2013.12.005
– volume: 2039
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.apm.2024.05.021_br0220
  article-title: Sensor coverage and location for real-time traffic prediction in large-scale networks
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2039-01
– volume: 136
  start-page: 229
  year: 2005
  ident: 10.1016/j.apm.2024.05.021_br0090
  article-title: Locating active sensors on traffic networks
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-005-2047-z
– volume: 43
  start-page: 873
  issue: 8
  year: 2009
  ident: 10.1016/j.apm.2024.05.021_br0100
  article-title: Identification of vehicle sensor locations for link-based network traffic applications
  publication-title: Transp. Res., Part B, Methodol.
  doi: 10.1016/j.trb.2009.02.008
– volume: 9
  start-page: 184
  issue: 2
  year: 2015
  ident: 10.1016/j.apm.2024.05.021_br0200
  article-title: Traffic sensor location approach for flow inference
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2014.0023
– volume: 39
  start-page: 158
  year: 2022
  ident: 10.1016/j.apm.2024.05.021_br0250
  article-title: Layout of expressway traffic detectors considering failure factors
  publication-title: J. Highw. Transp. Res. Dev.
– volume: 16
  start-page: 6
  issue: 5
  year: 2016
  ident: 10.1016/j.apm.2024.05.021_br0110
  article-title: An algebraic and graphic combination approach to solve network sensor location problems
  publication-title: J. Transp. Syst. Eng. Inf. Technol.
– start-page: 789
  year: 2016
  ident: 10.1016/j.apm.2024.05.021_br0380
  article-title: The price of anarchy in transportation networks by estimating user cost functions from actual traffic data
– volume: 300
  start-page: 428
  issue: 2
  year: 2022
  ident: 10.1016/j.apm.2024.05.021_br0270
  article-title: A network sensor location problem for link flow observability and estimation
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.10.038
– start-page: 264
  year: 2016
  ident: 10.1016/j.apm.2024.05.021_br0400
  article-title: Implementation of brute force algorithm for topology optimisation of wireless networks
SSID ssj0005904
Score 2.4053721
Snippet This paper introduces link information value obtained by the traffic sensors and presents a traffic sensor location and flow estimation joint optimization...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms Flow estimation
Greedy algorithm
Sensor location
Transportation planning
Wasserstein metric
Title Data-driven traffic sensor location and path flow estimation using Wasserstein metric
URI https://dx.doi.org/10.1016/j.apm.2024.05.021
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUl3zgRBSUhxM7xwqKeFZIbcXeIsexpVTb7JLNtvvzmYntbFoeAiQuVmTZseT5NDO2v5kh5EWu6iSvjQ6jKmch06YKRcZkKLnRRlWai0gNxSb44aGYzYov7ilmNZQT4G0rNpti-V9FDX0gbAyd_Qtxjz-FDvgGoUMLYof2jwT_RvYyrDvUYlgAAlNEBCs4rC66AA1X7_nHWIs4MPPFRYCJNmwEY7Aerg6-yiEIEwthYonprlFTH9Y7rmdjxleMQMGKOnNvB5HQI-2bTiO_NaNqcZfTH-XYdeSiQ5Bd262vDvzUbPwv3c1Ewkbqlbsu8yEzlxidQ1bKIrK0zFEFp-klJRpP7HFircQPqt7eOpy-kktMKJCwIQFrEm_t2sg2PMI1cUnkyyaM59fJbsKzApTg7v77g9mHLSeoiJjPnIkT_DP4QAi8stDPHZmJc3J8h9x2pwq6b9Fwl1zT7T1y6_MooNV9cjLBBXW4oBYX1OOCAi4o4oIiLugWF3TABZ3gglpcPCAnbw-OX78LXU2NUIGT0oe1yHgqGdeMVboWRSVFXkUK7GWluGEyNokxMkmrHEbAabYGl17nAo6VKo0zHaUPyU67aPUjQnXKRAXujOEmZTJNhJG1EkZjtLYxLN4jkd-gUrmE81j3ZF56ZuFpCXta4p6WUVbCnu6Rl-OUpc228rvBzO966dxF6waWAJFfT3v8b9OekJtbjD8lO3231s_IDXXeN6vuuQPSd6Urkgg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+traffic+sensor+location+and+path+flow+estimation+using+Wasserstein+metric&rft.jtitle=Applied+mathematical+modelling&rft.au=Gao%2C+Jiaqi&rft.au=Yang%2C+Kai&rft.au=Shen%2C+Mengru&rft.au=Yang%2C+Lixing&rft.date=2024-09-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=133&rft.spage=211&rft.epage=231&rft_id=info:doi/10.1016%2Fj.apm.2024.05.021&rft.externalDocID=S0307904X24002476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon