Genie+OWA: Robustifying hierarchical clustering with OWA-based linkages

We investigate the application of the Ordered Weighted Averaging (OWA) data fusion operator in agglomerative hierarchical clustering. The examined setting generalises the well-known single, complete and average linkage schemes. It allows to embody expert knowledge in the cluster merge process and to...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 520; pp. 324 - 336
Main Authors: Cena, Anna, Gagolewski, Marek
Format: Journal Article
Language:English
Published: Elsevier Inc 01.05.2020
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate the application of the Ordered Weighted Averaging (OWA) data fusion operator in agglomerative hierarchical clustering. The examined setting generalises the well-known single, complete and average linkage schemes. It allows to embody expert knowledge in the cluster merge process and to provide a much wider range of possible linkages. We analyse various families of weighting functions on numerous benchmark data sets in order to assess their influence on the resulting cluster structure. Moreover, we inspect the correction for the inequality of cluster size distribution – similar to the one in the Genie algorithm. Our results demonstrate that by robustifying the procedure with the Genie correction, we can obtain a significant performance boost in terms of clustering quality. This is particularly beneficial in the case of the linkages based on the closest distances between clusters, including the single linkage and its “smoothed” counterparts. To explain this behaviour, we propose a new linkage process called three-stage OWA which yields further improvements. This way we confirm the intuition that hierarchical cluster analysis should rather take into account a few nearest neighbours of each point, instead of trying to adapt to their non-local neighbourhood.
AbstractList We investigate the application of the Ordered Weighted Averaging (OWA) data fusion operator in agglomerative hierarchical clustering. The examined setting generalises the well-known single, complete and average linkage schemes. It allows to embody expert knowledge in the cluster merge process and to provide a much wider range of possible linkages. We analyse various families of weighting functions on numerous benchmark data sets in order to assess their influence on the resulting cluster structure. Moreover, we inspect the correction for the inequality of cluster size distribution – similar to the one in the Genie algorithm. Our results demonstrate that by robustifying the procedure with the Genie correction, we can obtain a significant performance boost in terms of clustering quality. This is particularly beneficial in the case of the linkages based on the closest distances between clusters, including the single linkage and its “smoothed” counterparts. To explain this behaviour, we propose a new linkage process called three-stage OWA which yields further improvements. This way we confirm the intuition that hierarchical cluster analysis should rather take into account a few nearest neighbours of each point, instead of trying to adapt to their non-local neighbourhood.
Author Gagolewski, Marek
Cena, Anna
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0000-0001-8697-5383
  surname: Cena
  fullname: Cena, Anna
  email: A.Cena@mini.pw.edu.pl
  organization: Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, Warsaw 00-662, Poland
– sequence: 2
  givenname: Marek
  orcidid: 0000-0003-0637-6028
  surname: Gagolewski
  fullname: Gagolewski, Marek
  organization: Faculty of Mathematics and Information Science, Warsaw University of Technology ul. Koszykowa 75, Warsaw 00-662, Poland
BookMark eNp9kFFLwzAUhYNMcJv-AN_6Lq1J2iaNPo3hpjAYiOJjSNPb7c6aSlKV_Xsz5pMPgwMXzrnfhXsmZOR6B4RcM5oxysTtLkMXMk45zSiPKs_ImFWSp4IrNiJjGpM02uUFmYSwo5QWUogxWS7BIdys32Z3yXNff4UB2z26TbJF8MbbLVrTJbaLAfiD_4PDNonraW0CNEmH7t1sIFyS89Z0Aa7-5pS8Lh5e5o_par18ms9WqeWMD6mpLQUQlaisla1s2pxKWyplK8PaWjHGOKNKqIKpUpkib0BKzqEuCi7yvG3yKZHHu9b3IXhotcXBDNi7wRvsNKP60Ife6diHPvShKY8qI8n-kZ8eP4zfn2TujwzEl75jIzpYBGehQQ920E2PJ-hf9cR6Qw
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107124
crossref_primary_10_1007_s10489_021_02624_8
crossref_primary_10_1016_j_fss_2023_108740
crossref_primary_10_1016_j_ins_2023_119516
crossref_primary_10_1016_j_ins_2021_04_076
crossref_primary_10_1016_j_ins_2020_12_020
crossref_primary_10_1016_j_ins_2021_10_004
crossref_primary_10_1016_j_ins_2021_01_070
crossref_primary_10_1016_j_ins_2021_02_017
crossref_primary_10_1155_2022_4835540
Cites_doi 10.1007/s10489-018-1238-7
10.1109/21.87068
10.18637/jss.v053.i09
10.4316/AECE.2017.04010
10.1016/j.ins.2016.05.003
10.1016/j.ins.2018.11.032
10.1016/j.ins.2017.08.065
10.1016/j.eswa.2011.04.055
10.1080/18756891.2013.859862
10.1093/comjnl/9.4.373
10.1093/bioinformatics/btx810
10.1016/j.ins.2018.04.008
10.1093/comjnl/26.4.354
10.1016/j.fss.2013.01.007
10.1007/BF01908075
10.1109/34.868688
10.1007/BF00535481
10.1109/TFUZZ.2011.2123899
10.1002/int.20097
10.1007/BF02294699
10.1145/233269.233324
10.1007/s10479-014-1589-3
10.1109/3477.891145
10.1016/j.ins.2014.02.062
10.1016/j.ins.2019.03.024
10.1142/S0218488500000290
10.1016/j.fss.2009.10.021
10.1007/s00357-018-9250-5
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.02.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 336
ExternalDocumentID 10_1016_j_ins_2020_02_025
S0020025520301006
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c212t-abc0ee6868cc7f7df307c599c8a1fb911121096941959a43de7722eb442633fd3
ISSN 0020-0255
IngestDate Sat Nov 29 07:29:43 EST 2025
Tue Nov 18 21:57:12 EST 2025
Fri Feb 23 02:48:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aggregation
OWA
Data fusion
Genie
Hierarchical clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c212t-abc0ee6868cc7f7df307c599c8a1fb911121096941959a43de7722eb442633fd3
ORCID 0000-0003-0637-6028
0000-0001-8697-5383
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2020_02_025
crossref_primary_10_1016_j_ins_2020_02_025
elsevier_sciencedirect_doi_10_1016_j_ins_2020_02_025
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Frà nti, Sieranoja (bib0009) 2018; 48
Mayor, Calvo (bib0024) 1997; vol. 1
Gagolewski, Cena, Bartoszuk (bib0011) 2016
Cena (bib0005) 2018
Yager (bib0035) 1988; 18
Yildirim, Birant (bib0038) 2017; 17
Yager (bib0036) 2000; 30
Małyszko, S. T. WierzchoÅ (bib0023) 2007
Graves, Pedrycz (bib0015) 2010; 161
Majewska, Truskolaski (bib0022) 2018
Murtagh (bib0028) 1983; 26
Cena, Gagolewski (bib0006) 2017
Nasıbov, Kandemır-Cavas (bib0029) 2011; 38
Ultsch (bib0032) 2005
Xu (bib0034) 2005; 20
Calvo, Mayor, Torrens, Suner, Mas, Carbonell (bib0004) 2000; 8
Gagolewski, Bartoszuk, Cena (bib0010) 2016; 363
Gomez, Rojas, Montero, Rodriguez, Beliakov (bib0014) 2014; 7
D. Müllner, Modern hierarchical, agglomerative clustering algorithms, arXiv
Lance, Williams (bib0019) 1967
Vu, Georgievska, Szoke, Kuzniar, Rober (bib0033) 2018; 34
Djenouri, Belhadi, Fournier-Viger, Lin (bib0007) 2018; 453
Euán, Ombao, Ortega (bib0008) 2018; 35
MacQueen (bib0021) 1967; vol. 1
[stat.ML] (2011).
Jain, Dubes (bib0017) 1988
Milligan (bib0025) 1979; 44
Gil-Garcia, Badia-Contelles, Pons-Porrata (bib0013) 2006; vol. 2
Müllner (bib0027) 2013; 53
Lawrence, Phipps (bib0020) 1985; 2
Zhu, Jiang, Evangelidis, Zhang, Pang, Li (bib0041) 2019; 488
Cai, Zhang, Thung, Dai, Hao (bib0003) 2014; 272
Zhou, Wang, Zhang (bib0040) 2020; 509
Beliakov, James, Li (bib0002) 2011; 19
Yahyaoui, Own (bib0037) 2018; 422
Hastie, Tibshirani, Friedman (bib0016) 2009
Beliakov, James (bib0001) 2013; 226
Jamison, Orey, Pruitt (bib0018) 1965; 4
Şeref, Fan, Borenstein, Chaovalitwongse (bib0030) 2018; 263
Gan, Ma, Wu (bib0012) 2007
Shi, Malik (bib0031) 2000; 22
T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for large databases, in: Proc. ACM SIGMOD International Conference on Management of Data – SIGMOD ’96, pp. 103–114.
Zhu (10.1016/j.ins.2020.02.025_bib0041) 2019; 488
Lawrence (10.1016/j.ins.2020.02.025_bib0020) 1985; 2
Hastie (10.1016/j.ins.2020.02.025_bib0016) 2009
Euán (10.1016/j.ins.2020.02.025_bib0008) 2018; 35
Graves (10.1016/j.ins.2020.02.025_bib0015) 2010; 161
Milligan (10.1016/j.ins.2020.02.025_bib0025) 1979; 44
Murtagh (10.1016/j.ins.2020.02.025_bib0028) 1983; 26
Shi (10.1016/j.ins.2020.02.025_bib0031) 2000; 22
Jain (10.1016/j.ins.2020.02.025_bib0017) 1988
Gagolewski (10.1016/j.ins.2020.02.025_bib0010) 2016; 363
Majewska (10.1016/j.ins.2020.02.025_bib0022) 2018
Yager (10.1016/j.ins.2020.02.025_bib0036) 2000; 30
Yahyaoui (10.1016/j.ins.2020.02.025_bib0037) 2018; 422
Beliakov (10.1016/j.ins.2020.02.025_bib0002) 2011; 19
Djenouri (10.1016/j.ins.2020.02.025_bib0007) 2018; 453
Yildirim (10.1016/j.ins.2020.02.025_bib0038) 2017; 17
Lance (10.1016/j.ins.2020.02.025_bib0019) 1967
10.1016/j.ins.2020.02.025_bib0026
Cena (10.1016/j.ins.2020.02.025_sbref0006) 2017
Gomez (10.1016/j.ins.2020.02.025_bib0014) 2014; 7
Müllner (10.1016/j.ins.2020.02.025_bib0027) 2013; 53
Ultsch (10.1016/j.ins.2020.02.025_bib0032) 2005
Gan (10.1016/j.ins.2020.02.025_bib0012) 2007
Frà nti (10.1016/j.ins.2020.02.025_bib0009) 2018; 48
Małyszko (10.1016/j.ins.2020.02.025_bib0023) 2007
Vu (10.1016/j.ins.2020.02.025_bib0033) 2018; 34
Calvo (10.1016/j.ins.2020.02.025_bib0004) 2000; 8
Zhou (10.1016/j.ins.2020.02.025_bib0040) 2020; 509
MacQueen (10.1016/j.ins.2020.02.025_bib0021) 1967; vol. 1
Nasıbov (10.1016/j.ins.2020.02.025_bib0029) 2011; 38
Gil-Garcia (10.1016/j.ins.2020.02.025_bib0013) 2006; vol. 2
Cena (10.1016/j.ins.2020.02.025_sbref0005) 2018
Şeref (10.1016/j.ins.2020.02.025_bib0030) 2018; 263
Mayor (10.1016/j.ins.2020.02.025_bib0024) 1997; vol. 1
Cai (10.1016/j.ins.2020.02.025_bib0003) 2014; 272
Gagolewski (10.1016/j.ins.2020.02.025_bib0011) 2016
Beliakov (10.1016/j.ins.2020.02.025_bib0001) 2013; 226
10.1016/j.ins.2020.02.025_bib0039
Xu (10.1016/j.ins.2020.02.025_bib0034) 2005; 20
Jamison (10.1016/j.ins.2020.02.025_bib0018) 1965; 4
Yager (10.1016/j.ins.2020.02.025_bib0035) 1988; 18
References_xml – volume: 19
  start-page: 562
  year: 2011
  end-page: 574
  ident: bib0002
  article-title: Learning Choquet-integral-based metrics for semisupervised clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2009
  ident: bib0016
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 453
  start-page: 154
  year: 2018
  end-page: 167
  ident: bib0007
  article-title: Fast and effective cluster-based information retrieval using frequent closed itemsets
  publication-title: Inf. Sci.
– volume: 38
  start-page: 12684
  year: 2011
  end-page: 12690
  ident: bib0029
  article-title: OWA-based linkage method in hierarchical clustering: application on phylogenetic trees
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 343
  year: 1979
  end-page: 346
  ident: bib0025
  article-title: Ultrametric hierarchical clustering algorithms
  publication-title: Psychometrika
– volume: 7
  start-page: 595
  year: 2014
  end-page: 604
  ident: bib0014
  article-title: Consistency and stability in aggregation operators: an application to missing data problems
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 363
  start-page: 8
  year: 2016
  end-page: 23
  ident: bib0010
  article-title: Genie: a new, fast, and outlier-resistant hierarchical clustering algorithm
  publication-title: Inf. Sci.
– volume: 34
  start-page: 1577
  year: 2018
  end-page: 1579
  ident: bib0033
  article-title: fMLC: fast multi-level clustering and visualization of large molecular datasets
  publication-title: Bioinformatics
– volume: 35
  start-page: 71
  year: 2018
  end-page: 99
  ident: bib0008
  article-title: The hierarchical spectral merger algorithm: a new time series clustering procedure
  publication-title: J. Classif.
– reference: D. Müllner, Modern hierarchical, agglomerative clustering algorithms, arXiv:
– volume: 17
  start-page: 77
  year: 2017
  end-page: 88
  ident: bib0038
  article-title: K-linkage: a new agglomerative approach for hierarchical clustering
  publication-title: Adv. Electr. Comput. Eng.
– volume: 30
  start-page: 835
  year: 2000
  end-page: 845
  ident: bib0036
  article-title: Intelligent control of the hierarchical agglomerative clustering process
  publication-title: IEEE Trans. Syst. ManCybern. Part B
– volume: 53
  start-page: 1
  year: 2013
  end-page: 18
  ident: bib0027
  article-title: Fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python
  publication-title: J. Stat. Softw.
– volume: vol. 1
  start-page: 281
  year: 1997
  end-page: 285
  ident: bib0024
  article-title: On extended aggregation functions
  publication-title: Proc. IFSA 1997
– volume: 488
  start-page: 205
  year: 2019
  end-page: 218
  ident: bib0041
  article-title: Efficient registration of multi-view point sets by k-means clustering
  publication-title: Inf. Sci.
– volume: 509
  start-page: 343
  year: 2020
  end-page: 355
  ident: bib0040
  article-title: Objective extraction via fuzzy clustering in evolutionary many-objective optimization
  publication-title: Inf. Sci.
– year: 2018
  ident: bib0005
  publication-title: Adaptive Hierarchical Clustering Algorithms based on Data Aggregation Methods
– volume: 161
  start-page: 522
  year: 2010
  end-page: 543
  ident: bib0015
  article-title: Kernel-based fuzzy clustering: a comparative experimental study
  publication-title: Fuzzy Sets Syst.
– volume: 26
  start-page: 354
  year: 1983
  end-page: 359
  ident: bib0028
  article-title: A survey of recent advances in hierarchical clustering algorithms
  publication-title: Comput. J.
– volume: 20
  start-page: 843
  year: 2005
  end-page: 865
  ident: bib0034
  article-title: An overview of methods for determining OWA weights
  publication-title: Int. J. Intell. Syst.
– volume: 18
  start-page: 183
  year: 1988
  end-page: 190
  ident: bib0035
  article-title: On ordered weighted averaging aggregation operators in multicriteria decision making
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: vol. 2
  start-page: 569
  year: 2006
  end-page: 572
  ident: bib0013
  article-title: A general framework for agglomerative hierarchical clustering algorithms
  publication-title: 18th International Conference on Pattern Recognition (ICPR’06)
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0031
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 75
  year: 2005
  end-page: 82
  ident: bib0032
  article-title: Clustering with SOM: U*C
  publication-title: Workshop on Self-Organizing Maps
– volume: 272
  start-page: 29
  year: 2014
  end-page: 48
  ident: bib0003
  article-title: A general framework of hierarchical clustering and its applications
  publication-title: Inf. Sci.
– year: 1988
  ident: bib0017
  article-title: Algorithms for Clustering Data
– volume: 263
  start-page: 93
  year: 2018
  end-page: 118
  ident: bib0030
  article-title: Information-theoretic feature selection with discrete k-median clustering
  publication-title: Ann. Oper. Res.
– reference: T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for large databases, in: Proc. ACM SIGMOD International Conference on Management of Data – SIGMOD ’96, pp. 103–114.
– year: 2007
  ident: bib0012
  article-title: Data Clustering: Theory, Algorithms, and Applications, Philadelphia, Alexandria
– start-page: 373
  year: 1967
  end-page: 380
  ident: bib0019
  article-title: A general theory of classification sorting strategies: 1. Hierarchical systems
  publication-title: Comput. J.
– start-page: 1
  year: 2018
  end-page: 21
  ident: bib0022
  article-title: Cluster-mapping procedure for tourism regions based on geostatistics and fuzzy clustering: example of Polish districts
  publication-title: Current Issues in Tourism
– start-page: 299
  year: 2007
  end-page: 304
  ident: bib0023
  article-title: Standard and genetic k-means clustering techniques in image segmentation
  publication-title: 6th International Conference on Computer Information Systems and Industrial Management Applications (CISIM’07)
– reference: [stat.ML] (2011).
– volume: 226
  start-page: 1
  year: 2013
  end-page: 18
  ident: bib0001
  article-title: Stability of weighted penalty-based aggregation functions
  publication-title: Fuzzy Sets Syst.
– year: 2017
  ident: bib0006
  article-title: OWA-based linkage and the Genie correction for hierarchical clustering
  publication-title: Proc. FUZZ-IEEE’17
– start-page: 191
  year: 2016
  end-page: 202
  ident: bib0011
  article-title: Hierarchical clustering via penalty-based aggregation and the Genie approach
  publication-title: Modeling Decisions for Artificial Intelligence (Lecture Notes in Artificial Intelligence 9880)
– volume: 8
  start-page: 417
  year: 2000
  end-page: 451
  ident: bib0004
  article-title: Generation of weighting triangles associated with aggregation functions
  publication-title: Int. J. Uncertain. Fuzziness Knowl. Based Syst.
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: bib0020
  article-title: Comparing partitions
  publication-title: J. Classi.
– volume: 4
  start-page: 40
  year: 1965
  end-page: 44
  ident: bib0018
  article-title: Convergence of weighted averages of independent random variables
  publication-title: Z. Wahrscheinlichkeitstheorie Verw. Geb.
– volume: 48
  start-page: 4743
  year: 2018
  end-page: 4759
  ident: bib0009
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intell.
– volume: 422
  start-page: 558
  year: 2018
  end-page: 571
  ident: bib0037
  article-title: Unsupervised clustering of service performance behaviors
  publication-title: Inf. Sci.
– volume: vol. 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: bib0021
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc. Fifth Berkeley Symp. on Math. Statist. and Prob.
– year: 1988
  ident: 10.1016/j.ins.2020.02.025_bib0017
– volume: 48
  start-page: 4743
  year: 2018
  ident: 10.1016/j.ins.2020.02.025_bib0009
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1238-7
– volume: 18
  start-page: 183
  year: 1988
  ident: 10.1016/j.ins.2020.02.025_bib0035
  article-title: On ordered weighted averaging aggregation operators in multicriteria decision making
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.87068
– volume: 53
  start-page: 1
  year: 2013
  ident: 10.1016/j.ins.2020.02.025_bib0027
  article-title: Fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v053.i09
– volume: 17
  start-page: 77
  year: 2017
  ident: 10.1016/j.ins.2020.02.025_bib0038
  article-title: K-linkage: a new agglomerative approach for hierarchical clustering
  publication-title: Adv. Electr. Comput. Eng.
  doi: 10.4316/AECE.2017.04010
– volume: 363
  start-page: 8
  year: 2016
  ident: 10.1016/j.ins.2020.02.025_bib0010
  article-title: Genie: a new, fast, and outlier-resistant hierarchical clustering algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.05.003
– start-page: 75
  year: 2005
  ident: 10.1016/j.ins.2020.02.025_bib0032
  article-title: Clustering with SOM: U*C
– year: 2009
  ident: 10.1016/j.ins.2020.02.025_bib0016
– volume: 509
  start-page: 343
  year: 2020
  ident: 10.1016/j.ins.2020.02.025_bib0040
  article-title: Objective extraction via fuzzy clustering in evolutionary many-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.11.032
– volume: vol. 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.ins.2020.02.025_bib0021
  article-title: Some methods for classification and analysis of multivariate observations
– ident: 10.1016/j.ins.2020.02.025_bib0026
– volume: 422
  start-page: 558
  year: 2018
  ident: 10.1016/j.ins.2020.02.025_bib0037
  article-title: Unsupervised clustering of service performance behaviors
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.065
– volume: 38
  start-page: 12684
  year: 2011
  ident: 10.1016/j.ins.2020.02.025_bib0029
  article-title: OWA-based linkage method in hierarchical clustering: application on phylogenetic trees
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.055
– volume: vol. 2
  start-page: 569
  year: 2006
  ident: 10.1016/j.ins.2020.02.025_bib0013
  article-title: A general framework for agglomerative hierarchical clustering algorithms
– volume: 7
  start-page: 595
  year: 2014
  ident: 10.1016/j.ins.2020.02.025_bib0014
  article-title: Consistency and stability in aggregation operators: an application to missing data problems
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1080/18756891.2013.859862
– start-page: 373
  year: 1967
  ident: 10.1016/j.ins.2020.02.025_bib0019
  article-title: A general theory of classification sorting strategies: 1. Hierarchical systems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/9.4.373
– volume: 34
  start-page: 1577
  year: 2018
  ident: 10.1016/j.ins.2020.02.025_bib0033
  article-title: fMLC: fast multi-level clustering and visualization of large molecular datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx810
– volume: 453
  start-page: 154
  year: 2018
  ident: 10.1016/j.ins.2020.02.025_bib0007
  article-title: Fast and effective cluster-based information retrieval using frequent closed itemsets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.008
– volume: vol. 1
  start-page: 281
  year: 1997
  ident: 10.1016/j.ins.2020.02.025_bib0024
  article-title: On extended aggregation functions
– volume: 26
  start-page: 354
  year: 1983
  ident: 10.1016/j.ins.2020.02.025_bib0028
  article-title: A survey of recent advances in hierarchical clustering algorithms
  publication-title: Comput. J.
  doi: 10.1093/comjnl/26.4.354
– year: 2018
  ident: 10.1016/j.ins.2020.02.025_sbref0005
– volume: 226
  start-page: 1
  year: 2013
  ident: 10.1016/j.ins.2020.02.025_bib0001
  article-title: Stability of weighted penalty-based aggregation functions
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2013.01.007
– volume: 2
  start-page: 193
  year: 1985
  ident: 10.1016/j.ins.2020.02.025_bib0020
  article-title: Comparing partitions
  publication-title: J. Classi.
  doi: 10.1007/BF01908075
– volume: 22
  start-page: 888
  year: 2000
  ident: 10.1016/j.ins.2020.02.025_bib0031
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 4
  start-page: 40
  year: 1965
  ident: 10.1016/j.ins.2020.02.025_bib0018
  article-title: Convergence of weighted averages of independent random variables
  publication-title: Z. Wahrscheinlichkeitstheorie Verw. Geb.
  doi: 10.1007/BF00535481
– volume: 19
  start-page: 562
  year: 2011
  ident: 10.1016/j.ins.2020.02.025_bib0002
  article-title: Learning Choquet-integral-based metrics for semisupervised clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2123899
– volume: 20
  start-page: 843
  year: 2005
  ident: 10.1016/j.ins.2020.02.025_bib0034
  article-title: An overview of methods for determining OWA weights
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20097
– start-page: 1
  year: 2018
  ident: 10.1016/j.ins.2020.02.025_bib0022
  article-title: Cluster-mapping procedure for tourism regions based on geostatistics and fuzzy clustering: example of Polish districts
  publication-title: Current Issues in Tourism
– volume: 44
  start-page: 343
  year: 1979
  ident: 10.1016/j.ins.2020.02.025_bib0025
  article-title: Ultrametric hierarchical clustering algorithms
  publication-title: Psychometrika
  doi: 10.1007/BF02294699
– ident: 10.1016/j.ins.2020.02.025_bib0039
  doi: 10.1145/233269.233324
– volume: 263
  start-page: 93
  year: 2018
  ident: 10.1016/j.ins.2020.02.025_bib0030
  article-title: Information-theoretic feature selection with discrete k-median clustering
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-014-1589-3
– start-page: 299
  year: 2007
  ident: 10.1016/j.ins.2020.02.025_bib0023
  article-title: Standard and genetic k-means clustering techniques in image segmentation
– volume: 30
  start-page: 835
  year: 2000
  ident: 10.1016/j.ins.2020.02.025_bib0036
  article-title: Intelligent control of the hierarchical agglomerative clustering process
  publication-title: IEEE Trans. Syst. ManCybern. Part B
  doi: 10.1109/3477.891145
– volume: 272
  start-page: 29
  year: 2014
  ident: 10.1016/j.ins.2020.02.025_bib0003
  article-title: A general framework of hierarchical clustering and its applications
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.062
– volume: 488
  start-page: 205
  year: 2019
  ident: 10.1016/j.ins.2020.02.025_bib0041
  article-title: Efficient registration of multi-view point sets by k-means clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.03.024
– year: 2017
  ident: 10.1016/j.ins.2020.02.025_sbref0006
  article-title: OWA-based linkage and the Genie correction for hierarchical clustering
– volume: 8
  start-page: 417
  year: 2000
  ident: 10.1016/j.ins.2020.02.025_bib0004
  article-title: Generation of weighting triangles associated with aggregation functions
  publication-title: Int. J. Uncertain. Fuzziness Knowl. Based Syst.
  doi: 10.1142/S0218488500000290
– volume: 161
  start-page: 522
  year: 2010
  ident: 10.1016/j.ins.2020.02.025_bib0015
  article-title: Kernel-based fuzzy clustering: a comparative experimental study
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2009.10.021
– start-page: 191
  year: 2016
  ident: 10.1016/j.ins.2020.02.025_bib0011
  article-title: Hierarchical clustering via penalty-based aggregation and the Genie approach
– volume: 35
  start-page: 71
  year: 2018
  ident: 10.1016/j.ins.2020.02.025_bib0008
  article-title: The hierarchical spectral merger algorithm: a new time series clustering procedure
  publication-title: J. Classif.
  doi: 10.1007/s00357-018-9250-5
– year: 2007
  ident: 10.1016/j.ins.2020.02.025_bib0012
SSID ssj0004766
Score 2.3476162
Snippet We investigate the application of the Ordered Weighted Averaging (OWA) data fusion operator in agglomerative hierarchical clustering. The examined setting...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 324
SubjectTerms Aggregation
Data fusion
Genie
Hierarchical clustering
OWA
Title Genie+OWA: Robustifying hierarchical clustering with OWA-based linkages
URI https://dx.doi.org/10.1016/j.ins.2020.02.025
Volume 520
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqjQd4QDBADNjkB8QDKCixkzrmbZvGGIKB0IC-RbZjT0xVOnXdtD-fO38k4VOAhFRFVRS3le_X-_Dd_Y6Qx06raqp1lakWVGDJWZ3pVolMlIbXdeuc8tUWn96Io6N6NpPvJ5PD1AtzORddV19dybP_Kmq4B8LG1tm_EHf_oXAD3oPQ4Qpih-sfCf7Adphz2H332Z-df1hoHNgV2plw8LVPHXhakPkFsiT0p7GwIEOj1j7DrC7omfOx5xr7ljxcotns3fE9GzrLkI25L-hRJ4s5aNAwFvutWkZW4HjCwPKhni8ce6XWl28qM3P_IAscu89t0J61YNmUhfFbSb1WLB8pSB46pqOt5YH85Ac1Hk4UTiH2QEZ1lntaVVYNNquvJMRks4-LGMZ2nnx9nYlKgoJb3zncn70emmRFSFyn351S3L7Y77sv-rmTMnI8jm-RmzFioDtB0rfJxHYb5MaIR3KDbMXuE_qEjsREo96-Qw48JlDAL-gYD3SMBzrggSIeaI8HmvBwl3x8uX-89yqLEzQyAy7JKlPa5NZO62ltjHCidaDRDWyOqVXhNNo5iPgl9jLLSqqStxaCLWZ1iTT-3LX8HlnrFp29T2jhuCuMzCvd8tLIUoPfqbSThQUz4Mpik-RpyxoT6eVxysm8SXWEpw3scoO73OQMXtUmedovOQvcKr97uExyaCLKg9PXAGh-vezBvy17SK4P_4RHZG21vLBb5Jq5XH05X25HaH0FqUqFyw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genie%2BOWA%3A+Robustifying+hierarchical+clustering+with+OWA-based+linkages&rft.jtitle=Information+sciences&rft.au=Cena%2C+Anna&rft.au=Gagolewski%2C+Marek&rft.date=2020-05-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=520&rft.spage=324&rft.epage=336&rft_id=info:doi/10.1016%2Fj.ins.2020.02.025&rft.externalDocID=S0020025520301006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon