Reconfigurability and reliability of systolic/wavefront arrays

The authors study fault-tolerant redundant structures for maintaining reliable arrays. In particular, they assume that the desired array (application graph) is embedded in a certain class of regular, bounded-degree graphs called dynamic graphs. The degree of reconfigurability (DR) and DR with distan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers Jg. 42; H. 7; S. 854 - 862
Hauptverfasser: Sha, E.H.-M., Steiglitz, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.07.1993
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:0018-9340
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The authors study fault-tolerant redundant structures for maintaining reliable arrays. In particular, they assume that the desired array (application graph) is embedded in a certain class of regular, bounded-degree graphs called dynamic graphs. The degree of reconfigurability (DR) and DR with distance (DR/sup d/) of a redundant graph are defined. When DR and DR/sup d/ are independent of the size of the application graph, the graph is finitely reconfigurable (FR) and locally reconfigurable (LR), respectively. It is shown that DR provides a natural lower bound on the time complexity of any distributed reconfiguration algorithm and that there is no difference between being FR and LR on dynamic graphs. It is also shown that if both local reconfigurability and a fixed level of reliability are to be maintained, a dynamic graph must be of a dimension at least one greater than the application graph. Thus, for example, a one-dimensional systolic array cannot be embedded in a one-dimensional dynamic graph without sacrificing either reliability or locality of reconfiguration.< >
AbstractList The authors study fault-tolerant redundant structures for maintaining reliable arrays. In particular, they assume that the desired array (application graph) is embedded in a certain class of regular, bounded-degree graphs called dynamic graphs. The degree of reconfigurability (DR) and DR with distance (DR(d)) of a redundant graph are defined. When DR and DR(d) are independent of the size of the application graph, the graph is finitely reconfigurable (FR) and locally reconfigurable (LR), respectively. It is shown that DR provides a natural lower bound on the time complexity of any distributed reconfiguration algorithm and that there is no difference between being FR and LR on dynamic graphs. It is also shown that if both local reconfigurability and a fixed level of reliability are to be maintained, a dynamic graph must be of a dimension at least one greater than the application graph. Thus, for example, a one-dimensional systolic array cannot be embedded in a one-dimensional dynamic graph without sacrificing either reliability or locality of reconfiguration
The authors study fault-tolerant redundant structures for maintaining reliable arrays. In particular, they assume that the desired array (application graph) is embedded in a certain class of regular, bounded-degree graphs called dynamic graphs. The degree of reconfigurability (DR) and DR with distance (DR/sup d/) of a redundant graph are defined. When DR and DR/sup d/ are independent of the size of the application graph, the graph is finitely reconfigurable (FR) and locally reconfigurable (LR), respectively. It is shown that DR provides a natural lower bound on the time complexity of any distributed reconfiguration algorithm and that there is no difference between being FR and LR on dynamic graphs. It is also shown that if both local reconfigurability and a fixed level of reliability are to be maintained, a dynamic graph must be of a dimension at least one greater than the application graph. Thus, for example, a one-dimensional systolic array cannot be embedded in a one-dimensional dynamic graph without sacrificing either reliability or locality of reconfiguration.< >
In this paper, we study fault-tolerant redundant structures for maintaining reliable arrays. In particular, we assume the desired array (application graph) is embedded in a certain class of regular, bounded-degree graphs called dynamic graphs. We define the degree of reconfigurability DR, and DR with distance DR exp d, of a redundant graph. When DR (respectively, DR exp d) is independent of the size of the application graph, we say the graph is finitely reconfigurable, FR (respectively, locally reconfigurable, LR). We show that DR provides a natural lower bound on the time complexity of any distributed reconfiguration algorithm and that there is no difference between being FR and LR on dynamic graphs. We then show that if we wish to maintain both local reconfigurability and a fixed level of reliability, a dynamic graph must be of dimension at least one greater than the application graph. Thus, for example, a 1D systolic array cannot be embedded in a 1D dynamic graph without sacrificing either reliability or locality of reconfiguration.
Author Sha, E.H.-M.
Steiglitz, K.
Author_xml – sequence: 1
  givenname: E.H.-M.
  surname: Sha
  fullname: Sha, E.H.-M.
  organization: Dept. of Comput. Sci. & Eng., Notre Dame Univ., IN, USA
– sequence: 2
  givenname: K.
  surname: Steiglitz
  fullname: Steiglitz, K.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3909570$$DView record in Pascal Francis
BookMark eNqF0EtLAzEUBeAsKtiqC7euuhDBxbQ3yeS1EaT4goIg3Q-3aSKR6aQmU2X-vSNTu3V1uJyPuzgTMmpi4wi5pDCjFMycshnjSjExImMAqgvDSzglk5w_AEAyMGNy9-ZsbHx43ydchzq03RSbzTS5Ovzd0U9zl9tYBzv_xi_nU2zaKaaEXT4nJx7r7C4OeUZWjw-rxXOxfH16WdwvC8soawuzpiVDXgqj5FpJhaCNlp5qsKoUzOsNSrRM9siAogggBAfU0qnSc8rPyM3wdpfi597lttqGbF1dY-PiPldMC6FLKv6HkgnKGO_h9QFitlj7hI0NudqlsMXUVdyAEQp6djswm2LOyfmjoFD9jlxRVg0j9_ZqsME5d3SH8gfyL3kF
CODEN ITCOB4
Cites_doi 10.1002/net.3230180307
10.1109/12.21143
10.1145/1634.2377
10.1145/28395.28401
10.1016/B978-0-12-566780-7.50022-2
10.1109/FTCS.1991.146698
10.1007/978-3-642-68402-9_27
10.1016/0021-9991(89)90235-0
10.1137/0219061
10.1109/TC.1982.1675922
10.1016/0743-7315(84)90010-8
10.1109/TC.1985.1676584
10.1109/TC.1976.1674712
10.1109/SPDP.1991.218202
10.1109/MC.1982.1653825
10.1109/12.54841
ContentType Journal Article
Copyright 1994 INIST-CNRS
Copyright_xml – notice: 1994 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
H8D
L7M
7SC
JQ2
L~C
L~D
DOI 10.1109/12.237725
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EndPage 862
ExternalDocumentID 3909570
10_1109_12_237725
237725
GroupedDBID --Z
-DZ
-~X
.55
.DC
0R~
29I
3EH
3O-
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
MVM
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
TWZ
UHB
UKR
UPT
VH1
X7M
XJT
XOL
XZL
YXB
YYQ
YZZ
ZCG
AAYXX
ABUFD
CITATION
AAYOK
IQODW
RIG
8FD
H8D
L7M
7SC
JQ2
L~C
L~D
ID FETCH-LOGICAL-c212t-9b142a345976b767a08986f180c7452f8da6ac2642a9071a005530a86e74f313
IEDL.DBID RIE
ISSN 0018-9340
IngestDate Thu Oct 02 03:32:34 EDT 2025
Sun Nov 09 10:15:16 EST 2025
Wed Apr 02 07:10:07 EDT 2025
Sat Nov 29 03:56:57 EST 2025
Wed Aug 27 02:49:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Systolic array
Fault tolerance
Wavefront array
Parallelism
Reliability
Dynamic graph
Reconfiguration
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c212t-9b142a345976b767a08986f180c7452f8da6ac2642a9071a005530a86e74f313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26251223
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_26251223
proquest_miscellaneous_28558415
crossref_primary_10_1109_12_237725
ieee_primary_237725
pascalfrancis_primary_3909570
PublicationCentury 1900
PublicationDate 19930701
PublicationDateYYYYMMDD 1993-07-01
PublicationDate_xml – month: 07
  year: 1993
  text: 19930701
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 1993
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
kung (ref11) 1988
ref10
ref2
ref17
ref16
ref19
ref8
ref7
sami (ref18) 1986
ref9
ref4
chung (ref1) 1983
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1002/net.3230180307
– ident: ref13
  doi: 10.1109/12.21143
– start-page: 712
  year: 1986
  ident: ref18
  article-title: Reconfiguration architecture for VLSI processing arrays
  publication-title: Proc IEEE Int Symp Fault-Tolerant Computing
– ident: ref3
  doi: 10.1145/1634.2377
– ident: ref6
  doi: 10.1145/28395.28401
– ident: ref16
  doi: 10.1016/B978-0-12-566780-7.50022-2
– ident: ref5
  doi: 10.1109/FTCS.1991.146698
– ident: ref2
  doi: 10.1007/978-3-642-68402-9_27
– ident: ref14
  doi: 10.1016/0021-9991(89)90235-0
– ident: ref8
  doi: 10.1137/0219061
– ident: ref12
  doi: 10.1109/TC.1982.1675922
– ident: ref10
  doi: 10.1016/0743-7315(84)90010-8
– ident: ref15
  doi: 10.1109/TC.1985.1676584
– ident: ref4
  doi: 10.1109/TC.1976.1674712
– start-page: 26
  year: 1983
  ident: ref1
  article-title: Diogenes: A methodology for designing fault-tolerant VLSI processing arrays
  publication-title: Proc IEEE Int Symp Fault-Tolerant Computing
– year: 1988
  ident: ref11
  publication-title: VLSI Array Processors
– ident: ref19
  doi: 10.1109/SPDP.1991.218202
– ident: ref9
  doi: 10.1109/MC.1982.1653825
– ident: ref17
  doi: 10.1109/12.54841
SSID ssj0006209
Score 1.4184943
Snippet The authors study fault-tolerant redundant structures for maintaining reliable arrays. In particular, they assume that the desired array (application graph) is...
In this paper, we study fault-tolerant redundant structures for maintaining reliable arrays. In particular, we assume the desired array (application graph) is...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 854
SubjectTerms Aerospace electronics
Applied sciences
Computer architecture
Computer science
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Fault tolerance
Maintenance
Runtime
Signal processing algorithms
Software
Switches
Systolic arrays
Throughput
Title Reconfigurability and reliability of systolic/wavefront arrays
URI https://ieeexplore.ieee.org/document/237725
https://www.proquest.com/docview/26251223
https://www.proquest.com/docview/28558415
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0006209
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s8aAHq1WxajWI17Sb3WQfF0HE4kGKhyK9hWm6KwVJJW0q_ffu5lEsiuAtjw0JM5mdb3ZmvwG4ldw43DrxpeTED6WJfBuroK8Nlwm1k4Mseka-PovhUI7H6qXi2S72wmiti-Iz3XOHRS5_Ok9yt1TWp8xiwagBDSFEuVVrM-nyupojsPbLQlKRCAVE9QPaKx_ccj1FLxVXCYkLKwxTdrH4MSEXXmbQ-tf3HcJBBSa9-1L7R7Cj0za06kYNXmW3bdj_xjp4DHcu5EzN7C3PSpLutYfp1Mv0-6w-nxvPUTw7zuD-J660cTQHHmYZrhcnMBo8jh6e_KqNgp9Yv7T0lVvnQRba0IFPBBdIpLIqCiRJRBhRI6fIMbHAiKKNlAN0tFyMoORahIYF7BSa6TzVZ-AZhdaXhaGJJhgqYbHEhKGhKnHpTEmiDtzUAo4_SrKMuAgyiIoDGpfi6UDbSW4zoL7a3dLE5jZTFgQK0oHrWjOxNQCX1cBUz_NFTLmDaJT9MUJGFmYF0fmvb76AvbKI0ZXgXkJzmeW6C7vJajlbZFfFX_YFT_jQEw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBR1WszyBeY_eVze5FELEo1uKhiLcwTXelIKmkreK_dzePoiiCtzw2JMxkdr7Zmf0G4ExJ63HrIFRKklAoG4UuVsHQWKlS5iYHVfSMfOzGvZ56etIPFc92sRfGGFMUn5lzf1jk8ofjdOaXytqMOywYLcJSJASj5Wat-bQr63oO6iyYC1LRCFGi25Sdl49-cz5FNxVfC4kTJw5b9rH4MSUXfqaz8a8v3IT1Ck4Gl6X-t2DBZE3YqFs1BJXlNmHtC-_gNlz4oDOzo-dZXtJ0fwSYDYPcvIzq87ENPMmzZw1uv-ObsZ7oIMA8x4_JDvQ71_2rm7BqpBCmzjNNQ-1XepALFzzIQSxjJEo7JVFF0lhEzKohSkwdNGLoYmWKnpiLE1TSxMJyynehkY0zsweB1ei8mRA2GqDQsUMTA46W6dQnNBWJWnBaCzh5LekykiLMIDqhLCnF04Kml9x8QH316Jsm5re5djAwJi04qTWTOBPweQ3MzHg2SZj0II3xP0aoyAEtGu3_-uYTWLnp33eT7m3v7gBWy5JGX5B7CI1pPjNHsJy-TUeT_Lj44z4BSLnTWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurability+and+reliability+of+systolic%2Fwavefront+arrays&rft.jtitle=IEEE+transactions+on+computers&rft.au=Sha%2C+E.H.-M.&rft.au=Steiglitz%2C+K.&rft.date=1993-07-01&rft.pub=IEEE&rft.issn=0018-9340&rft.volume=42&rft.issue=7&rft.spage=854&rft.epage=862&rft_id=info:doi/10.1109%2F12.237725&rft.externalDocID=237725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon