Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods
In this article, the structural and electronic properties of bulk ZnO have been studied using the plane-wave-based pseudopotential density functional theory (DFT). The structural parameters, band structure (BS), and density of states (DOS) of ZnO wurtzite structure have been investigated by Quantum...
Gespeichert in:
| Veröffentlicht in: | Solid state communications Jg. 325; S. 114166 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.02.2021
|
| Schlagworte: | |
| ISSN: | 0038-1098, 1879-2766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this article, the structural and electronic properties of bulk ZnO have been studied using the plane-wave-based pseudopotential density functional theory (DFT). The structural parameters, band structure (BS), and density of states (DOS) of ZnO wurtzite structure have been investigated by Quantum Wise within LDA (GGA) and LDA (GGA)+U methods by Fritz-Haber-Institute (FHI) pseudopotentials. The calculated band gaps using Hubbard U semiempirical corrections are in agreement with previous experimental works and shows both the valence band maximum and conduction band minimum located at the Γ point of the Brillouin zone (BZ). |
|---|---|
| AbstractList | In this article, the structural and electronic properties of bulk ZnO have been studied using the plane-wave-based pseudopotential density functional theory (DFT). The structural parameters, band structure (BS), and density of states (DOS) of ZnO wurtzite structure have been investigated by Quantum Wise within LDA (GGA) and LDA (GGA)+U methods by Fritz-Haber-Institute (FHI) pseudopotentials. The calculated band gaps using Hubbard U semiempirical corrections are in agreement with previous experimental works and shows both the valence band maximum and conduction band minimum located at the Γ point of the Brillouin zone (BZ). |
| ArticleNumber | 114166 |
| Author | Jafarova, V.N. Orudzhev, G.S. |
| Author_xml | – sequence: 1 givenname: V.N. surname: Jafarova fullname: Jafarova, V.N. email: vcafarova@beu.edu.az, vina246@rambler.ru organization: Institute of Physics ANAS, Baku, AZ, 1143, Azerbaijan – sequence: 2 givenname: G.S. surname: Orudzhev fullname: Orudzhev, G.S. organization: Institute of Physics ANAS, Baku, AZ, 1143, Azerbaijan |
| BookMark | eNp9kM9KAzEQh4NUsK0-gLccFdmaZNtNVk-lahUKPWgvXkKaPzRlm5QkVfYFfG5TqxcPhYFhGL4Zfl8PdJx3GoBLjAYY4ep2PYhRDggiecZDXFUnoIsZrQtCq6oDugiVrMCoZmegF-MaIUQZxV3w9ZrCTqZdEA0UTkHdaJmCd1bCbfBbHZLVEXoD3938Do6hsSGmYhusk3bb5JXSLtrUFmbnZLLe5TtppX1oYUw71cJPm1bWwdnD-Go6HV__PPkbbhZwo9PKq3gOTo1oor747X2weHp8mzwXs_n0ZTKeFZJgkoqaYkVHw1rXYlQyVu2bVFTIZclKpA0ph9VyaYY1ViTXqKwIMZQys8SUlUKVfYAPd2XwMQZteI6yEaHlGPG9SL7mWSTfi-QHkZmh_xhpk9hnTUHY5ih5fyB1jvRhdeBRWu2kVjZkzVx5e4T-BrG3j9s |
| CitedBy_id | crossref_primary_10_1109_TED_2024_3438109 crossref_primary_10_1016_j_inoche_2025_115046 crossref_primary_10_1016_j_inoche_2024_113420 crossref_primary_10_1016_j_jwpe_2025_107824 crossref_primary_10_1088_1402_4896_ad43a1 crossref_primary_10_1016_j_nexres_2025_100191 crossref_primary_10_1140_epjb_s10051_024_00673_9 crossref_primary_10_1016_j_jwpe_2025_107145 crossref_primary_10_1002_ente_202301325 crossref_primary_10_1016_j_cjph_2023_11_022 crossref_primary_10_1016_j_physb_2021_413078 crossref_primary_10_1007_s10904_024_03379_8 crossref_primary_10_1021_acssensors_5c00772 crossref_primary_10_1016_j_apsusc_2023_156828 crossref_primary_10_1002_slct_202403122 crossref_primary_10_1002_adfm_202407986 crossref_primary_10_3390_antiox13020213 crossref_primary_10_1016_j_ceramint_2025_02_001 crossref_primary_10_1016_j_mtcomm_2024_108908 crossref_primary_10_1016_j_physb_2025_417142 crossref_primary_10_1038_s41598_025_01403_6 crossref_primary_10_1039_D4SU00254G crossref_primary_10_1016_j_cocom_2021_e00627 crossref_primary_10_1002_bio_4432 crossref_primary_10_3390_chemosensors13040152 crossref_primary_10_1149_2162_8777_adf258 crossref_primary_10_1007_s10854_024_13717_8 crossref_primary_10_1016_j_jallcom_2025_180310 crossref_primary_10_3390_polym16243466 crossref_primary_10_1039_D5RA03007B crossref_primary_10_1016_j_electacta_2024_145483 crossref_primary_10_1039_D4NR05198J crossref_primary_10_1016_j_egyr_2023_05_247 crossref_primary_10_1016_j_ssc_2023_115197 crossref_primary_10_1002_pssb_202200360 crossref_primary_10_1016_j_mtcomm_2024_110727 crossref_primary_10_1038_s41467_025_59225_z crossref_primary_10_1007_s10971_024_06557_9 crossref_primary_10_3390_nano13243130 crossref_primary_10_3390_catal15020100 crossref_primary_10_1007_s00339_022_05845_x crossref_primary_10_1088_1361_648X_ad7fb3 crossref_primary_10_1016_j_comptc_2024_114842 crossref_primary_10_3390_molecules29020391 crossref_primary_10_1002_cptc_202400091 crossref_primary_10_1016_j_mtcomm_2025_111783 crossref_primary_10_1002_adts_202400245 crossref_primary_10_1016_j_mtcomm_2023_107419 crossref_primary_10_1016_j_apsusc_2025_164469 crossref_primary_10_1016_j_jece_2024_114525 crossref_primary_10_3390_nano13233070 crossref_primary_10_1002_crat_202400278 crossref_primary_10_1016_j_optmat_2024_115385 crossref_primary_10_1007_s42250_024_00887_5 crossref_primary_10_1088_1402_4896_ad16b1 crossref_primary_10_1016_j_ijhydene_2024_09_036 crossref_primary_10_1595_205651325X17138745351501 crossref_primary_10_1016_j_physleta_2024_129632 crossref_primary_10_1088_1742_6596_2701_1_012096 crossref_primary_10_1016_j_ceramint_2025_03_016 crossref_primary_10_3390_ma17215335 crossref_primary_10_1016_j_jmmm_2024_172226 crossref_primary_10_1016_j_jpcs_2025_112871 crossref_primary_10_1088_1361_6463_ad3b06 crossref_primary_10_1088_1402_4896_ad97f0 crossref_primary_10_1016_j_jlumin_2022_118843 crossref_primary_10_1016_j_nxmate_2024_100320 crossref_primary_10_1063_4_0000296 crossref_primary_10_1007_s11664_024_11260_0 crossref_primary_10_1007_s10008_023_05491_0 crossref_primary_10_1016_j_apsusc_2022_153915 crossref_primary_10_1007_s10854_022_07880_z crossref_primary_10_1007_s11356_025_36072_5 crossref_primary_10_1016_j_jcis_2021_09_147 crossref_primary_10_1007_s12648_023_03044_9 crossref_primary_10_1016_j_matchemphys_2025_130886 crossref_primary_10_1016_j_sna_2024_115405 crossref_primary_10_1002_adfm_202405885 crossref_primary_10_3390_inorganics12110281 crossref_primary_10_1557_s43580_025_01137_7 crossref_primary_10_1016_j_apsusc_2021_151071 crossref_primary_10_1016_j_seppur_2025_131478 crossref_primary_10_1016_j_talo_2025_100481 crossref_primary_10_33435_tcandtc_1417334 crossref_primary_10_1016_j_jcat_2023_115171 crossref_primary_10_3390_ma17194788 crossref_primary_10_1016_j_ceramint_2025_07_258 crossref_primary_10_1016_j_inoche_2023_111430 crossref_primary_10_1080_19392699_2025_2484323 crossref_primary_10_1088_1361_648X_ad4764 crossref_primary_10_3390_en17020463 crossref_primary_10_1021_acs_jpcc_4c03718 crossref_primary_10_1103_hy1v_vnnn crossref_primary_10_1016_j_radphyschem_2024_112350 crossref_primary_10_1002_aelm_202300892 crossref_primary_10_1016_j_saa_2024_124799 crossref_primary_10_1016_j_matchemphys_2023_127459 crossref_primary_10_1016_j_procbio_2024_08_015 crossref_primary_10_1016_j_jmst_2023_02_017 crossref_primary_10_1016_j_rser_2025_115767 crossref_primary_10_1039_D5TA01087J crossref_primary_10_1016_j_cocom_2022_e00747 crossref_primary_10_1016_j_ssc_2025_116056 crossref_primary_10_3390_min11101080 crossref_primary_10_1016_j_comptc_2025_115107 crossref_primary_10_1088_1361_648X_adfe4c crossref_primary_10_1021_acs_jpcc_5c03046 crossref_primary_10_1088_1742_6596_2995_1_012003 crossref_primary_10_1016_j_apsusc_2022_153208 |
| Cites_doi | 10.1002/qua.24593 10.1016/S0010-4655(98)00201-X 10.1103/PhysRev.136.B864 10.1166/rnn.2013.1032 10.1063/1.3617244 10.1103/PhysRevB.54.16533 10.1103/PhysRev.140.A1133 10.1103/PhysRevB.70.195325 10.1103/PhysRevB.57.1505 10.1103/PhysRevB.13.5188 10.1016/j.jallcom.2014.08.019 10.1088/0953-8984/9/4/002 10.1021/cr00074a002 10.1103/PhysRevB.23.5048 10.1016/j.spmi.2015.12.017 10.1016/0038-1098(95)00054-2 10.1126/science.1124005 10.1063/1.1603080 10.1103/PhysRevB.68.104101 10.1080/00150190210997 10.1126/science.288.5465.462 10.1103/PhysRevB.62.1660 10.1016/j.susc.2014.03.003 10.1016/j.physb.2009.09.074 10.1103/PhysRevB.71.035105 10.1016/S0921-5107(00)00604-8 10.1021/jp407281x 10.1103/PhysRevB.58.14102 10.1002/qua.24521 10.1063/1.1992666 10.1126/science.1060367 10.1016/j.jcrysgro.2005.10.067 10.1103/PhysRevLett.77.3865 10.1080/10584587.2014.905086 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ssc.2020.114166 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1879-2766 |
| ExternalDocumentID | 10_1016_j_ssc_2020_114166 S003810982030661X |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 3O- 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K TN5 UQL WUQ XFK XPP XSW ZMT ZY4 ~02 ~G- ~S- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c212t-971d7549e9a538869a53cd7acb3830ef2346bbf491d21d253622f778fb1783ad3 |
| ISSN | 0038-1098 |
| IngestDate | Tue Nov 18 20:55:43 EST 2025 Sat Nov 29 07:29:48 EST 2025 Fri Feb 23 02:45:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | GGA Electronic properties DFT Structural LDA Hubbard U ZnO |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c212t-971d7549e9a538869a53cd7acb3830ef2346bbf491d21d253622f778fb1783ad3 |
| ParticipantIDs | crossref_primary_10_1016_j_ssc_2020_114166 crossref_citationtrail_10_1016_j_ssc_2020_114166 elsevier_sciencedirect_doi_10_1016_j_ssc_2020_114166 |
| PublicationCentury | 2000 |
| PublicationDate | February 2021 2021-02-00 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Solid state communications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Huang, Mao (bib36) 2001; 292 Tokura (bib10) 2003; 56 Tokura, Nagaosa (bib11) 2000; 288 Himmetoglu (bib17) 2013; 114 Arroyo-De Dompablo (bib34) 2011; 135 Dong, Persson (bib37) 2004; 70 Yaakob, Hussin, Taib (bib9) 2014; 155 Hohenberg, Kohn (bib12) 1964; 136 Monkhorst, Pack (bib25) 1976; 13 Ma, Wu, Lv, Zhu (bib30) 2013; 117 Deng, Liu, Jing, Tian (bib33) 2014; 114 Cococcioni, de Gironcoli (bib18) 2005; 71 Perdew, Zunger (bib21) 1981; 23 Jaffe, Snyder, Lin, Hess (bib27) 2000; 62 Mohammadi, Baizaee, Salehi (bib28) 2011; 10 Wu, Cheng, Hu, Zhou (bib8) 2010; 405 Yu, Gongb, Wu (bib7) 2006; 287 Dudarev, Botton (bib16) 1998; 57 Harun, Yaakob (bib35) 2017; 4 Dhara, Giri (bib4) 2013; 2 Wang, Song (bib5) 2006; 312 Martin, Matthias (bib23) 1999; 119 Decremps, Datchi (bib29) 2003; 68 Kohn, Sham (bib13) 1965; 140 Anisimovy (bib15) 1997; 9 Honglin, Yingbo, Jinzhu, Ke (bib32) 2014; 617 Farooq (bib19) 2016; 90 Davidson, Feller (bib24) 1986; 86 Mang, Reimann, Rubenacke (bib6) 1995; 94 Onodera (bib3) 2002; 267 Zhang, Lu, Xu, Yuan (bib20) 2014; 625 Look (bib1) 2001; 80 Perdew, Burk, Wang (bib14) 1996; 54 Desgreniers (bib26) 1998; 58 Özgür, Alivov, Liu (bib2) 2005; 98 Perdew, Burke, Ernzerhof (bib22) 1996; 77 Decremps (10.1016/j.ssc.2020.114166_bib29) 2003; 68 Perdew (10.1016/j.ssc.2020.114166_bib22) 1996; 77 Dudarev (10.1016/j.ssc.2020.114166_bib16) 1998; 57 Harun (10.1016/j.ssc.2020.114166_bib35) 2017; 4 Honglin (10.1016/j.ssc.2020.114166_bib32) 2014; 617 Yaakob (10.1016/j.ssc.2020.114166_bib9) 2014; 155 Dhara (10.1016/j.ssc.2020.114166_bib4) 2013; 2 Hohenberg (10.1016/j.ssc.2020.114166_bib12) 1964; 136 Huang (10.1016/j.ssc.2020.114166_bib36) 2001; 292 Jaffe (10.1016/j.ssc.2020.114166_bib27) 2000; 62 Tokura (10.1016/j.ssc.2020.114166_bib10) 2003; 56 Ma (10.1016/j.ssc.2020.114166_bib30) 2013; 117 Mang (10.1016/j.ssc.2020.114166_bib6) 1995; 94 Dong (10.1016/j.ssc.2020.114166_bib37) 2004; 70 Zhang (10.1016/j.ssc.2020.114166_bib20) 2014; 625 Desgreniers (10.1016/j.ssc.2020.114166_bib26) 1998; 58 Özgür (10.1016/j.ssc.2020.114166_bib2) 2005; 98 Farooq (10.1016/j.ssc.2020.114166_bib19) 2016; 90 Perdew (10.1016/j.ssc.2020.114166_bib21) 1981; 23 Martin (10.1016/j.ssc.2020.114166_bib23) 1999; 119 Monkhorst (10.1016/j.ssc.2020.114166_bib25) 1976; 13 Anisimovy (10.1016/j.ssc.2020.114166_bib15) 1997; 9 Onodera (10.1016/j.ssc.2020.114166_bib3) 2002; 267 Wang (10.1016/j.ssc.2020.114166_bib5) 2006; 312 Tokura (10.1016/j.ssc.2020.114166_bib11) 2000; 288 Arroyo-De Dompablo (10.1016/j.ssc.2020.114166_bib34) 2011; 135 Davidson (10.1016/j.ssc.2020.114166_bib24) 1986; 86 Mohammadi (10.1016/j.ssc.2020.114166_bib28) 2011; 10 Yu (10.1016/j.ssc.2020.114166_bib7) 2006; 287 Kohn (10.1016/j.ssc.2020.114166_bib13) 1965; 140 Look (10.1016/j.ssc.2020.114166_bib1) 2001; 80 Cococcioni (10.1016/j.ssc.2020.114166_bib18) 2005; 71 Deng (10.1016/j.ssc.2020.114166_bib33) 2014; 114 Himmetoglu (10.1016/j.ssc.2020.114166_bib17) 2013; 114 Wu (10.1016/j.ssc.2020.114166_bib8) 2010; 405 Perdew (10.1016/j.ssc.2020.114166_bib14) 1996; 54 |
| References_xml | – volume: 54 start-page: 16533 year: 1996 ident: bib14 publication-title: Phys. Rev. – volume: 10 start-page: 1530 year: 2011 ident: bib28 publication-title: World Appl. Sci. – volume: 94 start-page: 251 year: 1995 ident: bib6 publication-title: Solid State Commun. – volume: 155 start-page: 15 year: 2014 ident: bib9 publication-title: Integrated Ferroelectrics Int. J. – volume: 136 start-page: 864 year: 1964 ident: bib12 publication-title: Phys. Rev. – volume: 288 start-page: 462 year: 2000 ident: bib11 publication-title: Science – volume: 2 start-page: 147 year: 2013 ident: bib4 publication-title: Rev. Nanosci. Nanotechnol – volume: 77 start-page: 3865 year: 1996 ident: bib22 publication-title: Phys. Rev. Lett. – volume: 312 start-page: 242 year: 2006 end-page: 245 ident: bib5 publication-title: Science – volume: 292 start-page: 1897 year: 2001 ident: bib36 publication-title: Science – volume: 90 start-page: 165 year: 2016 ident: bib19 publication-title: Superlattice. Microst. – volume: 287 start-page: 199 year: 2006 ident: bib7 publication-title: J. Cryst. Growth – volume: 56 start-page: 50 year: 2003 end-page: 55 ident: bib10 publication-title: Phys. Today – volume: 71 year: 2005 ident: bib18 publication-title: Phys. Rev. B – volume: 4 year: 2017 ident: bib35 publication-title: Mater. Res. Express – volume: 405 start-page: 606 year: 2010 ident: bib8 publication-title: Physica B – volume: 140 start-page: A1133 year: 1965 ident: bib13 publication-title: Phys. Rev. – volume: 86 start-page: 681 year: 1986 ident: bib24 publication-title: Chem. Rev. – volume: 9 start-page: 767 year: 1997 ident: bib15 publication-title: J. Phys. Condens. Matter – volume: 57 start-page: 1505 year: 1998 ident: bib16 publication-title: Phys. Rev. B – volume: 119 start-page: 67 year: 1999 ident: bib23 publication-title: Comput. Phys. Commun. – volume: 70 start-page: 195325 year: 2004 ident: bib37 publication-title: Phys. Rev. B – volume: 80 start-page: 383 year: 2001 ident: bib1 publication-title: Mater. Sci. Eng. B – volume: 117 start-page: 26029 year: 2013 ident: bib30 publication-title: J. Phys. Chem. C – volume: 114 start-page: 14 year: 2013 ident: bib17 publication-title: Int. J. Quant. Chem. – volume: 267 start-page: 131 year: 2002 end-page: 137 ident: bib3 publication-title: Ferroelectrics – volume: 23 start-page: 5048 year: 1981 ident: bib21 publication-title: Phys. Rev. – volume: 617 start-page: 102 year: 2014 ident: bib32 publication-title: J. Alloys Compd. – volume: 68 start-page: 104101 year: 2003 ident: bib29 publication-title: Phys. Rev. B – volume: 58 start-page: 14102 year: 1998 ident: bib26 publication-title: Phys. Rev. B – volume: 114 start-page: 468 year: 2014 ident: bib33 publication-title: Int. J. Quant. Chem. – volume: 62 start-page: 1660 year: 2000 ident: bib27 publication-title: Phys. Phys. Rev. B – volume: 13 start-page: 5188 year: 1976 ident: bib25 publication-title: Phys. Rev. B – volume: 98 year: 2005 ident: bib2 publication-title: J. Appl. Phys. – volume: 625 start-page: 36 year: 2014 ident: bib20 publication-title: Surf. Sci. – volume: 135 start-page: 5 year: 2011 ident: bib34 publication-title: J. Chem. Phys. – volume: 114 start-page: 468 year: 2014 ident: 10.1016/j.ssc.2020.114166_bib33 publication-title: Int. J. Quant. Chem. doi: 10.1002/qua.24593 – volume: 119 start-page: 67 year: 1999 ident: 10.1016/j.ssc.2020.114166_bib23 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(98)00201-X – volume: 136 start-page: 864 year: 1964 ident: 10.1016/j.ssc.2020.114166_bib12 publication-title: Phys. Rev. B doi: 10.1103/PhysRev.136.B864 – volume: 2 start-page: 147 year: 2013 ident: 10.1016/j.ssc.2020.114166_bib4 publication-title: Rev. Nanosci. Nanotechnol doi: 10.1166/rnn.2013.1032 – volume: 135 start-page: 5 year: 2011 ident: 10.1016/j.ssc.2020.114166_bib34 publication-title: J. Chem. Phys. doi: 10.1063/1.3617244 – volume: 54 start-page: 16533 year: 1996 ident: 10.1016/j.ssc.2020.114166_bib14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.16533 – volume: 140 start-page: A1133 year: 1965 ident: 10.1016/j.ssc.2020.114166_bib13 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 70 start-page: 195325 year: 2004 ident: 10.1016/j.ssc.2020.114166_bib37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.195325 – volume: 57 start-page: 1505 year: 1998 ident: 10.1016/j.ssc.2020.114166_bib16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1505 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.ssc.2020.114166_bib25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 617 start-page: 102 year: 2014 ident: 10.1016/j.ssc.2020.114166_bib32 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.08.019 – volume: 4 year: 2017 ident: 10.1016/j.ssc.2020.114166_bib35 publication-title: Mater. Res. Express – volume: 9 start-page: 767 year: 1997 ident: 10.1016/j.ssc.2020.114166_bib15 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/9/4/002 – volume: 86 start-page: 681 year: 1986 ident: 10.1016/j.ssc.2020.114166_bib24 publication-title: Chem. Rev. doi: 10.1021/cr00074a002 – volume: 23 start-page: 5048 year: 1981 ident: 10.1016/j.ssc.2020.114166_bib21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – volume: 90 start-page: 165 year: 2016 ident: 10.1016/j.ssc.2020.114166_bib19 publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2015.12.017 – volume: 94 start-page: 251 year: 1995 ident: 10.1016/j.ssc.2020.114166_bib6 publication-title: Solid State Commun. doi: 10.1016/0038-1098(95)00054-2 – volume: 312 start-page: 242 year: 2006 ident: 10.1016/j.ssc.2020.114166_bib5 publication-title: Science doi: 10.1126/science.1124005 – volume: 56 start-page: 50 year: 2003 ident: 10.1016/j.ssc.2020.114166_bib10 publication-title: Phys. Today doi: 10.1063/1.1603080 – volume: 68 start-page: 104101 year: 2003 ident: 10.1016/j.ssc.2020.114166_bib29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.104101 – volume: 267 start-page: 131 year: 2002 ident: 10.1016/j.ssc.2020.114166_bib3 publication-title: Ferroelectrics doi: 10.1080/00150190210997 – volume: 10 start-page: 1530 year: 2011 ident: 10.1016/j.ssc.2020.114166_bib28 publication-title: World Appl. Sci. – volume: 288 start-page: 462 year: 2000 ident: 10.1016/j.ssc.2020.114166_bib11 publication-title: Science doi: 10.1126/science.288.5465.462 – volume: 62 start-page: 1660 year: 2000 ident: 10.1016/j.ssc.2020.114166_bib27 publication-title: Phys. Phys. Rev. B doi: 10.1103/PhysRevB.62.1660 – volume: 625 start-page: 36 year: 2014 ident: 10.1016/j.ssc.2020.114166_bib20 publication-title: Surf. Sci. doi: 10.1016/j.susc.2014.03.003 – volume: 405 start-page: 606 year: 2010 ident: 10.1016/j.ssc.2020.114166_bib8 publication-title: Physica B doi: 10.1016/j.physb.2009.09.074 – volume: 71 year: 2005 ident: 10.1016/j.ssc.2020.114166_bib18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.035105 – volume: 80 start-page: 383 year: 2001 ident: 10.1016/j.ssc.2020.114166_bib1 publication-title: Mater. Sci. Eng. B doi: 10.1016/S0921-5107(00)00604-8 – volume: 117 start-page: 26029 year: 2013 ident: 10.1016/j.ssc.2020.114166_bib30 publication-title: J. Phys. Chem. C doi: 10.1021/jp407281x – volume: 58 start-page: 14102 issue: 21 year: 1998 ident: 10.1016/j.ssc.2020.114166_bib26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.14102 – volume: 114 start-page: 14 year: 2013 ident: 10.1016/j.ssc.2020.114166_bib17 publication-title: Int. J. Quant. Chem. doi: 10.1002/qua.24521 – volume: 98 year: 2005 ident: 10.1016/j.ssc.2020.114166_bib2 publication-title: J. Appl. Phys. doi: 10.1063/1.1992666 – volume: 292 start-page: 1897 year: 2001 ident: 10.1016/j.ssc.2020.114166_bib36 publication-title: Science doi: 10.1126/science.1060367 – volume: 287 start-page: 199 year: 2006 ident: 10.1016/j.ssc.2020.114166_bib7 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.10.067 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.ssc.2020.114166_bib22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 155 start-page: 15 year: 2014 ident: 10.1016/j.ssc.2020.114166_bib9 publication-title: Integrated Ferroelectrics Int. J. doi: 10.1080/10584587.2014.905086 |
| SSID | ssj0007871 |
| Score | 2.5424907 |
| Snippet | In this article, the structural and electronic properties of bulk ZnO have been studied using the plane-wave-based pseudopotential density functional theory... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 114166 |
| SubjectTerms | DFT Electronic properties GGA Hubbard U LDA Structural ZnO |
| Title | Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods |
| URI | https://dx.doi.org/10.1016/j.ssc.2020.114166 |
| Volume | 325 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007871 issn: 0038-1098 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBoIXBAPE-JIfQAKqRI2T1DZvYYwvTQWpK6p4iRI7Fp2qtGpKNXjkgb-bsx0noWOIPSBVaWvFdpT79e5yvfsdQo_BRCoqWOTROI-9SMjc42LIvIHkRcRyEuaZocw_oqMRm075x17vh6uF2cxpWbLTU778r6KGMRC2Lp29gLibRWEAPoPQ4Qhih-M_CX5sGGENm4YOinf63Cx14H2lGVS1i_i5_GDL0tUMPEBv6aLuVV_qpPb1N0_bPJePbkr4LRmtid3Oyv7Rq0THGN4kOrKgt-oOPCEvJ3V76qrrAI8X85nsmzImnc7eFqe0qYyZylaLjXFqP_kjvwkDr77K71_gbuhIvj_2u_EKErgU51YHh5pQ1vaedjo4JHFHi8IzWmB7sZxR8DbWcOJXleafJIbruD73dzLtLSPXpB66rLaTFJZI9RKpXeIS2iU05qAZd5N3h9P3jT0HlWb7LtbX7f4bN1mCW9fxZ--m47Ec30DX60cNnFiI3ES9otxDVw9ch789dMWk_4rqFvrZggaDJHELGtyCBi8UBtC8wAnehgw-CxlsIYMNZLCFDAaEPAV8PDObuC_9Ca6BchtNXh8eH7z16g4dngCXZ-1xGkgaR7zgGRhONtRvQtJM5CELB4UiYTTMcxXxQBJ4xeAtEUUpU3lAWZjJ8A7aKRdlcRdhRmAWFSqWgkY5jzPKDFEU50rorkT7aODubCpq-nrdRWWenivRffS8mbK03C1_Ozly4kpr59M6lSlA7_xp9y6yx310rf1FPEA7INriIbosNutZtXpU4-4XXBuh3w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+electronic+properties+of+ZnO%3A+A+first-principles+density-functional+theory+study+within+LDA%28GGA%29+and+LDA%28GGA%29%2BU+methods&rft.jtitle=Solid+state+communications&rft.au=Jafarova%2C+V.N.&rft.au=Orudzhev%2C+G.S.&rft.date=2021-02-01&rft.issn=0038-1098&rft.volume=325&rft.spage=114166&rft_id=info:doi/10.1016%2Fj.ssc.2020.114166&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ssc_2020_114166 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1098&client=summon |